Download presentation
Presentation is loading. Please wait.
Published byKenneth Quinn Modified over 9 years ago
1
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org Operators on Vector Fields of Genealogical Stemmata for Musical Performance Operators on Vector Fields of Genealogical Stemmata for Musical Performance
2
Contents Performance Fields Cell Hierarchies Algorithms and Calculations Initial Performances Operator Typology Performance Fields Cell Hierarchies Algorithms and Calculations Initial Performances Operator Typology
3
Fields
4
√ H E L E e pEpE pepe √E√E √ E (I 1 ) √ E (I k ) I1I1 IkIk X T(E) = (d √ E /dE) -1 [ q /sec]he l x = √ (X)
5
P-Cells X x = √ (X) √ = (1,1,…,1) = Const. x 0 = √ I (X 0 ) initial performance x = x 0 t. Z(X)= J( √ )(X) -1 performance field performance field, defined on F frame cube F = the frame of Z I = initial set X 0 Œ I = initial set X 0 = Ú X Z(t) Ú X Z = integral curve through X X0X0 x0x0 F
6
P-Cells Performance Cell A Performance Cell C is a 5-tuple as follows frame a closed frame F = [a E,b E ] ¥ [a H,b H ] ¥... — Para, Para = {E,H,L,…} = finite set of symbolic parameters performance field a Lipschitz-continuous performance field Z, defined on a neighbourhood of F initial set a polyhedral initial set I, i.e., a finite union of possibly degenerate simplexes of any dimension in — Para symbolic kernel a finite set K — Para, the symbolic kernel, such that every integral curve Ú X Z through X Œ K hits I initial performance an initial performance map √ I : I — para (para = {e,h,l,…} physical parameters) such that for any X Œ K and two points a = Ú X Z( ), b = Ú X Z( ), √ I (b) √ I (a) = ( ). K I F √I√I Z
7
P-Cells Cell p: C 1 C 2 The category Cell of cells has these morphisms p: C 1 C 2 : K1K1 I1I1 F1F1 √I1√I1 Z1Z1 K2K2 I2I2 F2F2 √I2√I2 Z2Z2 C1C1C1C1 C2C2C2C2 p we have Para 2 Para 1 p: — Para 1 — Para 2 is the projection such that p(F 1 ) F 2 p(I 1 ) I 2 p. √ I 1 = √ I 2.p I 1 Tp.Z 1 = Z 2.p
8
P-Cells Morphisms induce compatible performances K1K1 I1I1 F1F1 √I1√I1 Z1Z1 K2K2 I2I2 F2F2 √I2√I2 Z2Z2 K2K2K2K2 √2√2 √2(K2)√2(K2)√2(K2)√2(K2) pp K1K1K1K1 √1√1 √1(K1)√1(K1)√1(K1)√1(K1)
9
P-Cells Product fields: Tempo-Intonation field E H S(H) EH EH Z(E,H)=(T(E),S(H)) T(E)
10
(e(E),d(E,D) = e(E+D)-e(E)) T(E) P-Cells Parallel fields: Articulation field E D ED E Z(E,D) = T(E,D) = (T(E),2T(E+D) T(E))
11
Root Fundament P-Cells Work with Basis Basis parameters E, H, L, and corresponding fields T(E), S(H), I(L) Pianola Pianola parameters D, G, C cell hierarchy A cell hierarchy is a Diagram D in Cell such that there is exactly one root cell the diagram cell parameter sets are closed under union and non-empty intersection T S I I ¥ S T ¥ I T ¥ S T ¥ S T ¥ I T ¥ I ¥ S T ¥ I ¥ S TT
12
Calculations RUBATO ® software: Calculations via Runge-Kutta-Fehlberg methods for numerical ODE solutions
13
I t1t1 X = X 0 = X(0) X 1 = X(t 1 ) Initials
14
I X0X0 XiXi XkXk XjXj (t k +t i )/2 (t k +t j )/2 ? Initials
15
x = √ (X) X Q q XQXQ xqxq I Q Q Space(I) Closure(Space(I)) Space(X) Q Q
16
Typology T TT T Z( T, ) Stemma mother daughter granddaughter
17
Emotions, Gestures, Analyses Typology Big Problem: Describe Typology of shaping operators! w(E,H,…) H E
18
Typology Tempo Operators T(E)w(E)T w (E) = w(E).T(E) Deformation of the articulation field hierarchy TT TwTw T TwTw ww T TwTw? Q w (E,D) = w(E) 0 w(E+D)—w(E) w(E+D) w = Q w (E,D).Z Q w = J( √ w ) -1 „w-tempo“
19
Typology Operator Types TT T T? ww T TwTw QwQwQwQw √ (X,Y) = (x(X),y(X,Y)) The Lie Derivative Approach √ (X,Y) = (x(X), (X).y(X,Y)) Space(X) Space ( Y) Space(X) YX YX
20
TypologyYX YX J( √ ) = x/ X 0 y/ Y y/ X A 0 CB = J( √ ) -1 = A -1 0 C -1 BA -1 -1 C -1.y ƒ d. A -1 -1 C -1 = ln( ), Y=(1,…,1), e Y = embedding of Y-tangent space Y = Y — [L X ( )C -1 y-(e - -1)C -1 Y]e Y
21
Typology Y = Y —[L X ( )Cy-(e - -1)C Y]e Y Y = Y —[L X ( )C -1 y-(e - -1)C -1 Y]e Y y = U.Y + v C -1 = U -1 Y = Y — [L X ( )(Y+Const.)]e Y Y = Y — L Y X ( )(R.Y+C)e Y e C.R: — Space(Y) — Space(Y)
22
Typology The directed Lie derivative operator construction: In the given hierarchy, choose a hierarchy space Z In the given hierarchy, choose a hierarchy space Z select a weight on Z select a weight on Z choose any subspace S of the root space choose any subspace S of the root space select an affine directional endomorphism Dir S@S select an affine directional endomorphism Dir S@S Given the total field Y, define the operator Y ,Dir = Y — L Y Z ( Dir.e S
23
Typology Theorem: For the deformation types ww T TwTw QwQwQwQw TT T T? there is a suitable data set (Z,S, ,Dir) for the respective cell hierarchies such that the deformations are defined by directed Lie derivative operators Y ,Dir = Y — L Y Z ( Dir.e S T ¥ I T T? I method of characteristics
24
Typology RUBATO ® : Scalar operator Linear action Q w on ED-tangent bundle Direction of field changes Numerical integration control
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.