Presentation is loading. Please wait.

Presentation is loading. Please wait.

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Operators on Vector Fields of Genealogical.

Similar presentations


Presentation on theme: "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Operators on Vector Fields of Genealogical."— Presentation transcript:

1 Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org Operators on Vector Fields of Genealogical Stemmata for Musical Performance Operators on Vector Fields of Genealogical Stemmata for Musical Performance

2 Contents Performance Fields Cell Hierarchies Algorithms and Calculations Initial Performances Operator Typology Performance Fields Cell Hierarchies Algorithms and Calculations Initial Performances Operator Typology

3 Fields

4 √ H E L E e pEpE pepe √E√E √ E (I 1 ) √ E (I k ) I1I1 IkIk X T(E) = (d √ E /dE) -1 [ q /sec]he l x = √ (X)

5 P-Cells X x = √ (X) √  = (1,1,…,1) = Const. x 0 = √ I (X 0 ) initial performance x = x 0  t.  Z(X)= J( √ )(X) -1  performance field performance field, defined on F frame cube F = the frame of Z I = initial set X 0 Œ I = initial set X 0 = Ú X Z(t) Ú X Z = integral curve through X X0X0 x0x0 F

6 P-Cells Performance Cell A Performance Cell C is a 5-tuple as follows frame a closed frame F = [a E,b E ] ¥ [a H,b H ] ¥...  — Para, Para = {E,H,L,…} = finite set of symbolic parameters performance field a Lipschitz-continuous performance field Z, defined on a neighbourhood of F initial set a  polyhedral initial set I, i.e., a finite union of possibly degenerate simplexes of any dimension in — Para symbolic kernel a finite set K  — Para, the symbolic kernel, such that every integral curve Ú X Z through X Œ K hits I initial performance an initial performance map √ I : I  — para (para = {e,h,l,…} physical parameters) such that for any X Œ K and two points a = Ú X Z(  ), b = Ú X Z(  ),  √ I (b)  √ I (a) = (  ).  K I F √I√I Z

7 P-Cells Cell p: C 1  C 2 The category Cell of cells has these morphisms p: C 1  C 2 : K1K1 I1I1 F1F1 √I1√I1 Z1Z1 K2K2 I2I2 F2F2 √I2√I2 Z2Z2 C1C1C1C1 C2C2C2C2 p we have Para 2  Para 1 p: — Para 1  — Para 2 is the projection such that p(F 1 )  F 2 p(I 1 )  I 2 p. √ I 1 = √ I 2.p  I 1 Tp.Z 1 = Z 2.p

8 P-Cells Morphisms induce compatible performances K1K1 I1I1 F1F1 √I1√I1 Z1Z1 K2K2 I2I2 F2F2 √I2√I2 Z2Z2 K2K2K2K2 √2√2 √2(K2)√2(K2)√2(K2)√2(K2) pp K1K1K1K1 √1√1 √1(K1)√1(K1)√1(K1)√1(K1)

9 P-Cells Product fields: Tempo-Intonation field E H S(H) EH EH Z(E,H)=(T(E),S(H)) T(E)

10 (e(E),d(E,D) = e(E+D)-e(E)) T(E) P-Cells Parallel fields: Articulation field E D ED E Z(E,D) =  T(E,D) = (T(E),2T(E+D)  T(E))

11 Root Fundament P-Cells Work with Basis Basis parameters E, H, L, and corresponding fields T(E), S(H), I(L) Pianola Pianola parameters D, G, C cell hierarchy A cell hierarchy is a Diagram D in Cell such that there is exactly one root cell the diagram cell parameter sets are closed under union and non-empty intersection T S I I ¥ S T ¥ I T ¥ S  T ¥ S  T ¥ I T ¥ I ¥ S  T ¥ I ¥ S TT

12 Calculations RUBATO ® software: Calculations via Runge-Kutta-Fehlberg methods for numerical ODE solutions

13 I t1t1 X = X 0 = X(0) X 1 = X(t 1 ) Initials

14 I X0X0 XiXi XkXk XjXj (t k +t i )/2 (t k +t j )/2 ? Initials

15 x = √ (X) X Q q XQXQ xqxq I Q Q  Space(I) Closure(Space(I))  Space(X) Q Q

16 Typology T TT T Z(  T, ) Stemma mother daughter granddaughter

17 Emotions, Gestures, Analyses Typology Big Problem: Describe Typology of shaping operators! w(E,H,…) H E

18 Typology Tempo Operators T(E)w(E)T w (E) = w(E).T(E) Deformation of the articulation field hierarchy TT TwTw T TwTw  ww T TwTw? Q w (E,D) = w(E) 0 w(E+D)—w(E) w(E+D)  w = Q w (E,D).Z Q w = J( √ w ) -1 „w-tempo“

19 Typology Operator Types TT T  T?  ww T TwTw QwQwQwQw √ (X,Y) = (x(X),y(X,Y)) The Lie Derivative Approach √ (X,Y) = (x(X), (X).y(X,Y)) Space(X)  Space ( Y) Space(X) YX YX

20 TypologyYX YX J( √ ) =  x/  X 0  y/  Y  y/  X A 0 CB = J( √ ) -1 = A -1 0  C -1 BA -1  -1 C -1.y ƒ d. A -1 -1 C -1  = ln( ),  Y=(1,…,1), e Y = embedding of Y-tangent space Y  =  Y — [L X (  )C -1 y-(e -  -1)C -1  Y]e Y

21 Typology Y  =  Y —[L X (  )Cy-(e -  -1)C  Y]e Y Y  =  Y —[L X (  )C -1 y-(e -  -1)C -1  Y]e Y y = U.Y + v C -1 = U -1  Y  =  Y — [L X (  )(Y+Const.)]e Y Y  =  Y — L Y X (  )(R.Y+C)e Y e C.R: — Space(Y)  — Space(Y)

22 Typology The directed Lie derivative operator construction: In the given hierarchy, choose a hierarchy space Z In the given hierarchy, choose a hierarchy space Z select a weight  on Z select a weight  on Z choose any subspace S of the root space choose any subspace S of the root space select an affine directional endomorphism Dir   S@S select an affine directional endomorphism Dir   S@S Given the total field Y, define the operator Y ,Dir  =  Y — L Y Z (  Dir.e S

23 Typology Theorem: For the deformation types  ww T TwTw QwQwQwQw TT T  T? there is a suitable data set (Z,S, ,Dir) for the respective cell hierarchies such that the deformations are defined by directed Lie derivative operators Y ,Dir  =  Y — L Y Z (  Dir.e S T ¥ I T  T? I method of characteristics

24 Typology RUBATO ® : Scalar operator Linear action Q w on ED-tangent bundle Direction of field changes Numerical integration control


Download ppt "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Operators on Vector Fields of Genealogical."

Similar presentations


Ads by Google