Download presentation
Presentation is loading. Please wait.
Published byAudra Brooks Modified over 9 years ago
1
LMS & IMS: their evolution, nucleosynthesis and dusty end S. Cristallo in collaboration with Oscar Straniero and Luciano Piersanti Osservatorio Astronomico di Teramo - INAF
2
AGBs: a theoretician perspective Very luminous (10 3 -10 4 our SUN) Very cold (2000-3000 K)
3
AGB structure CO Core He-shell H-shell Earth radius (~10 -2 R SUN ) Earth-Sun (~200 R SUN ) Practically, a nut in a 300 mts hot air balloon
4
The s-process in AGB stars Busso et al. 1999 13 C(α,n) 16 O reaction 22 Ne(α,n) 25 Mg reaction HOT BOTTOM BURNING (Boothroyd & Sackmann 1991) TDU
5
HYDROSTATIC, NO ROTATION, NO MAGNETIC FIELDS Four first-order non-linear constant coefficients differential equations Three characteristic relations The FRANEC Code (Frascati RAppson-Newton Evolutionary Code) (Chieffi & Straniero 1989; Straniero et al. 1997; Chieffi et al. 2001; Straniero et al. 2006; Cristallo et al. 2007; Cristallo et al. 2009)
6
Major uncertainty sources in stellar evolutionary codes and their link with grains 1.Opacities; 2.Mass-loss law; 3.Equation of State (IMS); 4.Convection treatment; 5.Non convective mixing mechanisms (LMS).
7
Opacities T 2000 K 4000-5000 K Atomic opacities Molecular opacities Grains C/O>1 CO – C 2 – CN - C 2 H 2 – C 3 Marigo 2002; Cristallo et al. 2007 C/O<1 TiO – H 2 O - CO
8
Metallicity 12 C & 14 N enh. factors 2 x 10 -2 1, 1.5, 1.8, 2.2, 5 Solar ≡ 1.4 x 10 -2 1, 1.5, 1.8, 2.2, 4 1 x 10 -2 & 8x10 -3 1, 1.8, 2.2, 5, 10 3 x 10 -3 & 6 x 10 -3 1, 2, 5, 10, 50 1 x 10 -3 1, 5, 10, 50, 200 1 x 10 -4 1, 10, 100, 500, 2000 C and N enhancements See also: Lederer & Aringer 2009; Weiss & Ferguson 2009 Ventura & Marigo 2009; Marigo & Aringer 2009 Karakas et al. 2010
9
Results The C-enhanced low temperature opacities make the stars redder in the AGB phase Effects on surface temperatures and, therefore, on mass-loss and nucleosynthetic yields
10
AGB PHASE Vassiliadis&Wood 1993 Straniero et al. 2006 1.BC K - temperature (Fluks et al. 1994) 2.Luminosity - M BOL 3.M K =M BOL -BC K 4.Period-M K (Whitelock et al. 2003) 5.Period – Mass-loss FRANEC Mass loss law GRAINS DRIVE THE MASS-LOSS
11
Grains: opacities and mass-loss Winds of carbon stars are considered to be dust-driven winds. Photons lead to a radiative acceleration of grains away from the star. Subsequently, momentum is transferred to the surrounding gas by gas-grains collisions. UNKNOWNS 1.grains opacity (how they interact with radiation); 2.grains growth process; 3.grains nucleation phase (in particular for C/O>>1); 4.stellar pulsation physics. It is commonly assumed that grain sizes are small compared to the relative wavelenght: that’s not always true (see e.g. Mattsson et al. 2011)
12
The Luminosity function of Galactic C-stars Guandalini et al. 2006 (A&A, 445, 1069) Cristallo et al. 2011 (ApJS, 197, 2)
13
The Luminosity function of Galactic C-stars Guandalini & Cristallo, in preparation Distances from van Leeuwen 2007 P-L from Whitelock et al. 2006
14
First attempt (to my knowledge) to evaluate the amount and type of dust production in AGB stars with a stellar evolutionary model Total mass of dust as a function of the stellar mass Ventura et al. 2012 (MNRAS 424, 2345) Ventura et al. 2012 (MNRAS 420, 1442) 1.Amount of silicates scales with Z 2.Silicates are produced in IMS (strongly dependence on HBB) 3.Mass-loss rate dtermines the dust condensation degree 4.For C-stars, the main source of uncertainty is the amount of dredged up carbon Mass of silicatesMass of carbon dust
15
EOS for IMS For Intermediate Mass Stars, the temperature at the bottom of the convective envelope is high enough (T>4e7 K) to allow proton captures: HOT BOTTOM BURNING (Boothroyd & Sackmann 1991)
16
Convection treatment Schwarzschild criterion: to determine convective borders Mixing length theory: to calculate velocities inside the convective zones Mixing efficiency: proportional to the ratio between the convective time scale and the time step of the calculation (Spark & Endal 1980); ΔX depends linearly on Δr (NOT diffusive approach). At the inner border of the convective envelope, we assume that the velocity profile drops following an exponentially decaying law v = v bce · exp (-d/β H p ) V bce is the convective velocity at the inner border of the convective envelope (CE) d is the distance from the CE H p is the scale pressure height β = 0.1 REF: Freytag (1996), Herwig (1997), Chieffi (2001), Straniero (2006), Cristallo (2001,2004,2006,2009) WARNING: v bce =0 except during Dredge Up episodes
17
Gradients profiles WITHOUT exponentially decaying velocity profile Gradients profiles WITH exponentially decaying velocity profile CONVECTIVE ENVELOPE RADIATIVE He-INTERSHELL During a TDU episode
18
An interesting by-product: the formation of the 13 C pocket 13 C-pocket 23 Na-pocket 14 N-pocket
19
Variation of the 13 C-pocket pulse by pulse X( 13 C eff )=X( 13 C)-X( 14 N)*13/14 1 st 11 th 14 N strong neutron poison via 14 N(n,p) 14 C reaction Cristallo et al. 2009
20
13 C pocket and dredge up as a function of Third TP of 2 M ʘ at Z=Z ʘ and Z=10 -4
21
Convective 13 C burning
22
Cristallo et al. 2009 He-intershell elements enrichments J=Iω=mr 2 ω
23
F.R.U.I.T.Y. (Franec Repository of Updated Isotopic Tables & Yields) August the 9 th 2012: added 1.3 M SUN models at all metallicities Z=10 -4 models (within the end of November) On line at www.oa-teramo.inaf.it/fruity (1.5,2.0,2.5,3.0) M SUN with Z=(1 x 10 -3,3 x 10 -3,6 x 10 -3,8 x 10 -3,1 x 10e -2,sun,2 x 10e -2 ) Dedicated mailing list with upgrades
24
Final AGB composition for 0.0001<Z<Z A key quantity: the neutron/seed ratio, that is n( 13 C eff ) /n( 56 Fe) 13 C is primary like 56 Fe is secondary like M=2M ʘ
25
[ls/Fe] [Pb/Fe] [hs/Fe] s-process indexes (I) [ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3 [hs/Fe]=([Ba/Fe]+[La/Fe]+[Nd/Fe] +[Sm/Fe])/4
26
Cristallo et al. 2011 [ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3[hs/Fe]=([Ba/Fe]+[La/Fe]+[Nd/Fe] +[Sm/Fe])/4 Ba & CH stars Post-AGB Intrinsic C-rich Intrinsic O-rich Observations vs theory (II): [hs/ls] distributions
27
FRUITY Models vs Grains (measurements from Barzyk et al. 2007)
29
FRUITY and MONASH models vs Grains (measurements from Avila et al. 2012) The most interesting data are those that do not agree with theoretical models. Ernst Zinner (this morning)
30
A new set of FRANEC rotating AGB models 1.Centrifugal forces lead to deviations from spherical symmetry; 2.Differential rotation is considered and, following Endal & Sofia (1976,1978), the evolution of angular momentum (J) through the star is followed via a nonlinear diffusion equation (except at the inner border of the convective envelope, where we apply the same formalism of the chemical transport), by enforcing rigid rotation in convective regions (constant angular velocity); 3.Efficiency of both dynamical (Solberg-Hoiland, dynamical shear) and secular (Eddington-Sweet circulation, Goldreich-Shubert-Fricke, secular shear) instabilities are evaluated by computing the corresponding diffusion coefficients as described in Heger et al. (2000), but without their proposed f μ and f c ; 4.Angular momentum transport equation is solved contemporary to the chemical evolution equations to take into account the feedback of chemical mixing on molecular weight profile, which could inhibit secular instabilities (μ-current); 5.In solving the angular momentum transport and chemical mixing equations, we computed the effective diffusion coefficient as the sum of the convective one and those related to secular and dynamical rotationally instabilities; 6.No magnetic braking is considered. PRELIMINARY
31
THANKS!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.