Download presentation
Presentation is loading. Please wait.
Published byRolf Kelly Modified over 9 years ago
1
Laser Laboratory (-ies) Peter Müller
2
2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages: Large enhancement: EDM(Ra) / EDM(Hg) ~ 200 – 2000 Efficient use of 225 Ra atoms High electric field (> 100 kV/cm) Long coherence times (~ 100 s) Negligible “v x E” systematic effect
3
3 Search for EDM of 225 Ra Status: Trapped 225 Ra and 226 Ra EDM probing region constructed 10 -10 Torr, 100 kV/cm, 10 mG Next steps: Dipole trap transfer Optical pumping and detection 2 mm gap > 100 kV/cm ~ 1x10 4 226 Ra atoms
4
4 81 Kr / 39 Ar Atom Trap Trace Analysis Argon-39 : cosmogenic half-life = 270 a 39 Ar/Ar = 8 x 10 -16 Radio-Argon Dating : 50 – 1000 year range study ocean and groundwater previously with LLC and AMS Dark Matter Searches : LAr detectors (WARP, DEAP/CLEAN) 39 Ar major background search for old / depleted Argon WIMP Argon Programme Krypton-81 : cosmogenic half-life = 230 ka 81 Kr/Kr = 1 x 10 -12
5
5 Atom Trapping & Nuclear Charge Radii of 6,8 He He-6: L.-B. Wang et al., PRL 93, 142501 (2004) He-8: P. Mueller et al., PRL 99, 252501 (2007) 389 nm 1083 nm Atom Trap Setup Single atom signal 8 He Spectroscopy
6
6
7
7 Beta-Decay Study with Laser Trapped 6 He 6 He trapping rate: 1 10 4 s -1, 2 10 5 coincidence events in 15 min: a = ± 0.008 1 week: a/a = 0.1% Simulated time-of-flight signal Standard Model New Physics 6 He yields: ATLAS: 1 10 7 s -1 CENPA: ~1 10 9 s -1 SARAF / SPIRAL2: ~1 10 12 s -1
8
8 Beta-Neutrino Correlation in the Decay of 6 He 6 He 6 Li t 1/2 =0.808 sec 100% 0+0+ 1+1+ E 0 =3.5097 MeV Johnson et al., Phys. Rev. (1963) Best experimental limit: a = - 0.3343 ± 0.0030 21 Na
9
9 He-6 Production @ CENPA < 18 MeV ~ 5 p A 2 H
10
10 Isotopic Menu for Laser Spectroscopy Low-energy yield, s -1 > 10 6 10 5 - 10 6 10 4 - 10 5 10 3 - 10 4 10 2 - 10 3 10 - 10 2 1 - 10 < 1 Isotope shifts ->charge radii, deformations Hyperfine structure -> moments (dipole,…) ->spin
11
11 Nucl. Instr. Meth. A 594 (2008) 162–177
12
12 TRIGA Trap & Laser
13
13 TRIGA Laser
14
14 Laser Lab Layout @ CARIBU AC HEPA Laser Enclosure (~ 6’ x 10’) Laser Table (~ 3’ x 7’) Ion Trap Collinear Beamline Tape Station Cf-252 source 80 mCi -> 1Ci High-resolution mass separator m/m > 1/20000 Gas catcher RF Cooler & Buncher … starting in fall 2010
15
15 Linear Paul Trap for Spectroscopy PMT / EMCCD open geometry, linear Paul trap -> large light collection efficiency buffer gas w. LN 2 cooling, -> good spectroscopic resolution, quenching of dark states -> few (single ?) ion detection sensitivity ITO coated optics Ba + black, conductively coated electrodes
16
16 Ion Trap Spectroscopy at CARIBU Linear Paul trap for spectroscopy –Initially with neutron-rich Ba + –Isotope shift + moments (HFS) –Use RF cooler / buncher & transfer line To investigate: –optimized trap geometry and detection system –Buffer gas cooling + quenching (with H 2 ) –Cooling of trap with LN 2 Future: –other CARIBU beams High mass: Pr, Nd, Eu, … Low mass: Y, Zr, Nb, Sr, … –Yb + -> No + with ATLAS Upgrade Ba Isotopes
17
17 Collinear Laser Spectroscopy High spectroscopic resolution High sensitivity through bunched beams Neutral atoms w/charge-exchange Measure for the first time: Rh, Ru, … Extend isotopic chains on: Sn, Mo, Nb, … Other opportunities: Laser polarized beams, e.g., Kr, Xe … Laser polarization in matrix (solid noble gasses) Resonance ionization to suppress isobars/isomers … … 2011
18
18 Isotopic Menu – “Low Mass” Wavelengths, nmLaser SpectroscopyCARIBU IIILSMethodRange > 100/s 30Zn589.4 7579 31Ga417.2 7683 32Ge*265.16 7786 33As197.2 7989 34Se207.48 8092 35Br*827.47 8394 36Kr*811.52 72.. 96CS8597 37Rb780.0 76 - 96CS8797 38Sr460.86421.777 - 100CS89102 39Y414.4 JYFL.. 102CS91104 40Zr388.65 87 … 102CS94106 41Nb492.45.. 103CS97109 42Mo390.41 … 108 CS 100112 43Tc429.82 101113 44Ru392.7 103115 45Rh369.34 105118 46Pd276.39 109124 47Ag328.16 101 … 110CS111125 48Cd326.1214.5102 … 120CS112126 49In451.3236.5104 - 127CS115133 50Sn452.5 108 - 132CS, RIMS124136 N = 50 Refractory elements N = 82 MOT Collinear
19
19 Menu of Isotopes – “High Mass” Wavelengths, nmLaser SpectroscopyCARIBU IIILSMethodRange > 100/s 51Sb231.22 124138 52Te214.35 129140 53I183.04 131142 54Xe*882.18 116 … 146CS133146 55Cs455.65 118 - 146CS135148 56Ba553.7455.4120 – 146,148CS137150 57La418.84 … @ TRIUMFCS139152 58Ce450.64331… @ JYFLCS141155 59Pr495.14590 144157 60Nd468.34590132 … 150RIS146159 61Pm? 149161 62Sm471.71 138 - 154RIS151164 63Eu459.4604.9138 - 159RIS154166 64Gd432.71 146 - 160RIS156168 65Tb432.64 147... 159RIS159169 66Dy404.71 146 … 165RIS162171 67Ho410.38 151 … 165RIS166171 68Er415.23 150 … 167RIS169172 N = 82 MOT Collinear
20
20 Ion Beam Line for Laser Spec Setup PDT 90 3/10 kV -5 kV Post Accel. 50 kV 15 kV 3 kV + 2.9 kV Charge X Fluor. Det. 9 ft Stable Source @ +10/3 kV Lens X/Y Defl. Stable Source @ 3 kV 90
21
21 Discussion Points Need 1+ charge state for “heavy” isotopes –Operate RF cooler & buncher with neon ? –Charge exchange 2+ to 1+ (???) on gas target Beam energies, extraction voltage etc. Location and type of stable beam sources Gas catcher after gas filled separator –Where to put it to have “low energy beams” area? –For heavy elements or, e.g., Sn-100
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.