Download presentation
Presentation is loading. Please wait.
Published byGeoffrey Sherman McCormick Modified over 9 years ago
1
3.4 – Linear Programming
2
Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
3
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
4
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
5
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
6
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
7
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
8
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
9
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
10
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
11
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
12
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y
13
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y)
14
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4) (3,5) (3,-4)
15
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5) (3,-4)
16
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)
17
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)3 – (-4)7
18
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)3 – (-4)7
19
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)3 – (-4)7 Max of 7 @ (3,-4)
20
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)3 – (-4)7 Max of 7 @ (3,-4)
21
3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y)x – yf(x,y)f(x,y) (0.-4)0 – (-4)4 (3,5)3 – 5-2 (3,-4)3 – (-4)7 Max of 7 @ (3,-4)Min of -2 @ (3,5)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.