Download presentation
Presentation is loading. Please wait.
Published byKenneth Cannon Modified over 9 years ago
1
1 Unix Architecture
2
2 Operating Systems Concepts 1. Process 2. Memory management 3. Information protection & security 4. Scheduling and resource management 5. The Shell
3
3 System Structure – UNIX UNIX – The kernel Consists of everything below the system-call interface and above the physical hardware Provides the file system, CPU scheduling, memory management, and other operating- system functions.
4
4 Process Concept Process – a program in execution UNIX’s process definition: “an address space with one or more threads executing within that address space, and the required system resources for those threads.” A process includes: program counter stack data section
5
5 Process State As a process executes, it changes state new: The process is being created. running: Instructions are being executed. waiting: The process is waiting for some event to occur. ready: The process is waiting to be assigned to a process. terminated: The process has finished execution.
6
6 Process Control Block (PCB) Information associated with each process. Process state Program counter CPU registers CPU scheduling information Memory-management information Accounting information I/O status information
7
7 Context Switch When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process. Context-switch time is overhead; the system does no useful work while switching.
8
8 Some of the Process Scheduling Queues Job queue – set of all processes in the system. Ready queue – set of all processes residing in main memory, ready and waiting to execute. Device queues – set of processes waiting for an I/O device. Process migration between the various queues.
9
9 Schedulers Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue. Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU.
10
10 Process Creation Parent process creates children processes, which, in turn create other processes, forming a tree of processes. Execution Parent and children execute concurrently. Parent waits until children terminate.
11
11 Signals A signal is an event generated by the UNIX system in response to some condition: Errors - memory violations, math processors errors Interrupt Calling to kill system call
12
12 Threads (briefly) A thread (or lightweight process) is consists of: program counter register set stack space A thread shares with its peer threads its: code section data section operating-system resources A traditional or heavyweight process is equal to a task with one thread
13
13 Threads Support in Solaris 2 Solaris 2 is a version of UNIX with support for threads at the kernel and user levels, symmetric multiprocessing, and real-time scheduling. LWP – intermediate level between user-level threads and kernel-level threads. Resource needs of thread types: Kernel thread: small data structure and a stack; thread switching does not require changing memory access information – relatively fast. LWP: PCB with register data, accounting and memory information,; switching between LWPs is relatively slow. User-level thread: only need stack and program counter; no kernel involvement means fast switching. Kernel only sees the LWPs that support user-level threads.
14
14 Solaris 2 Threads
15
15 Interprocess Communication (IPC) I/O Pipes Shared memory Message Passing
16
16 I/O System Calls I/O operations made by descriptors Descriptors are integer values represent indexes for special tables that are handle by the OS kernel to access the data – (a file can be a device also) Every process has his own descriptors, saved in his PDT – process descriptor table By default, every process has 3 descriptors: 0 – stdin - keyboard 1 – stdout - screen 2 – stderr - screen
17
17 Pipes FIFO data passing Can use for synchronization Implement via files by two descriptors (read, write) Pipe types: Named pipe Unnamed pipes
18
18 The File System
19
19 File Attributes Name – only information kept in human-readable form. Type – needed for systems that support different types. Location – pointer to file location on device. Size – current file size. Protection – controls who can do reading, writing, executing. Time, date, and user identification – data for protection, security, and usage monitoring. Information about files are kept in the directory structure, which is maintained on the disk.
20
20 Access Lists and Groups Mode of access: read, write, execute Three classes of users RWX a) owner access 7 1 1 1 RWX b) groups access 6 1 1 0 RWX c) public access1 0 0 1 Attach a group to a file chgrp G game owner group public chmod761game
21
21 In-Memory File System Structures
22
22 Indexed Allocation Brings all pointers together into the index block. index table
23
23 Example of Indexed Allocation
24
24 Indexed Allocation (Cont.) Need index table Random access have overhead of index block. Mapping from logical to physical in a file of maximum size of 256K words and block size of 512 words. We need only 1 block for index table.
25
25 UNIX inode (UFS)
26
26 Disk Partition Booting the operating system Primary Boot Sector (sector 0) – MBR and Partition Table – allocate the active partition and jump to it’s secondary boot sector Active Partition – the loader of the OS is in the secondary boot sector – set the OS file system inactive partition – the secondary boot sector is ignored – additional file system
27
27 Disk Formatting and Partitioning Disk Partitioning MS-DOS /Linux – fdisk MS-DOS partitions can mount as separate drives Linux – one partition for root file system and one for swap file system Disk Formatting Setup the partition with the file system structure MS-DOS format – bootstrap code, FAT, root directory UNIX mkfs – bootstrap code,super block, i-nodes
28
28 UNIX
29
29 UNIX
30
30 UNIX
31
31 UNIX i-node structure is small, fixed size Smaller files can be accessed quickly – larger files longer How big can a file be ? Assume 1K disk block and 32 bit address 10Kb + 256 * 1K + 256*256*1K + 256*256*256*1K > 16GB
32
32 UNIX
33
33 Traditional UNIX Scheduling Scheduling algorithm objectives Provide good response time for interactive users Ensure that low-priority background jobs do not starve Scheduling algorithm implementation Multilevel feedback using round robin within each of the priority queues 1 second preemption Priority based on process type and execution history Priorities are recomputed once per second Base priority divides all processes into fixed bands of priority levels Bands used to optimize access to block devices (e.g., disk) and to allow the OS to respond quickly to system calls
34
34 Traditional UNIX Scheduling (cont.) CPU j (i) = Measure of processor utilization by process j through interval i P j ( i ) = Priority of process j at beginning of interval i ; lower values equal higher priorities Base j =Base priority of process j nice j =User controllable adjustment factor CPU j ( i – 1) P j (i) = Base j + 2 CPU j ( i – 1) 2 CPU j (i) = + nice j
35
35 Traditional UNIX Scheduling (cont.) Bands in decreasing order of priority Swapper Block I/O device control File manipulation Character I/O device control User processes Goals Provide the most efficient use of I/O devices Within the user process band, use the execution history to penalize processor-bound processes at the expense of I/O bound processes Example of process scheduling Processes A, B, and C are created at the same time with base priorities of 60 Clock interrupts the system 60 times a second and increments counter for running process
36
36 Traditional UNIX Scheduling (Example)
37
37 Linux Scheduling Enhances the traditional UNIX scheduling by adding two new scheduling classes for real- time processing Scheduling classes SCHED_FIFO: First-in-first-out real-time threads SCHED_RR: Round-robin real-time threads SCHED_OTHER: Other, non-real-time threads
38
38 Linux Scheduling: FIFO vs. RR
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.