Download presentation
Presentation is loading. Please wait.
Published byJasper Anthony Modified over 9 years ago
1
European Environment Agency Land and Ecosystem Accounting 2008 Demonstration of Agro-Fuel and Urban Intensification Modelling Scenarios using Existing LEAC Data Alex R. Oulton
3
Part One – Developing Scenarios to Model Potential Agrofuel Developments in Europe
4
We can use Corilis data to visualise the relative intensity of pastures and mosaic farmland in Europe using ArcMap
5
The same can be done visualise the relative intensity of Intensive Agriculture (and any other CLC class)
6
We can model changes in Intensive Agriculture using Map Algebra From…
7
To…
8
Assumptions of the Method: Intensification of agriculture would be linear across all regions above a selected threshold value (17) Regions lower than the threshold value would not be subjected to the intensification process
9
We can use Map Algebra to visualise the total amount of farmland in Europe (Intensive Agriculture + Pastures and Mosaics)
10
From this data we can visualise the amount of land required if we were to produce different quantities of agro-fuels in Europe 5% of all Agricultural land converted to biofuel plantations
11
10% of all Agricultural land converted to biofuel plantations
12
20% of all Agricultural land converted to biofuel plantations
13
Assumptions of the Method: Areas with intensity values of 60% - 80% would be most likely for conversion (highlighted in blue) The method considers the lower threshold of 60% as the most appropriate for conversion, increasing to land with higher intensification values when the demand increases
14
Map Algebra can also be used to standardise and visualise the relative polarity of land to CLC types using Existing Data…
15
…and a simulated increase in Intensive Agriculture
16
Assumptions of the Method: Identifying polarity is a good method for selecting suitable sites within the Intensive Agriculture and the Pasture and Mosaic farming domain Sites with little or no polarity are of no value when considering likely Agrofuel developments for reasons of land unsuitability
17
Using the hypothesis that Agro-fuel development would most likely occur in areas not already intensely farmed, but which are suitable according to land cover type, potential agrofuel developments can be identified from both Pastures and Mosaics, and Intensive Agriculture
18
Assumptions of the Method: The 50/50 rule is used There are other hypothesis to explore – set aside land, changes in CAP etc Both intensive agriculture and pastures and mosaics are considered with equal merit at this stage of analysis
19
A weighted overlay between Dominant Landscape Type (DLT)…
20
…and Relief…
21
…can be used as a security mechanism to remove any potential Agrofuel developments in unsuitable locations
22
This leaves a selection of likely Agrofuel developments in Vector Point Format which adhere to selection criteria
23
Assumptions of the Method: Using the weighted overlay technique: –DLT - Only Broad Pattern and Intense Agriculture (B1 – score 9) and Rural Mosaic and Pasture Landscape (B2 – score 8) are given consideration as areas in which Agrofuel development could occur –Relief - Only Inlands (score 9) and Uplands (score 4) were given consideration –Only potential conversion zones in areas which had a combination of both scoring factors were saved from elimination
24
Transport - The “select by location” feature can identify all potential Agrofuel developments within 50km of major and minor roads in the European Highway System
25
Likely Agrofuel sites can also be classified by their proximity to road networks
26
Assumptions of the Method: Distance is important for factoring in unit cost estimation Also for quantifying the negative environmental impacts of the fuel source
27
Natura2000 - The “select by location” feature can select potential Agrofuel developments which are more than 1km away from Natura2000 sites
28
Alternatively Natura2000 sites can be classified according to the total area of potential Agrofuel developments contained within them
29
Assumptions of the Method: Two ways of considering the problem of nature protection were executed to account for potentially different policies regarding ecosystem accounting, supply and demand of fuel etc
30
Arc Map can be used to generate statistics about the number of potential Agrofuel Areas at NUTS2/3 level
31
Arc Map can be used to generate statistics about the density of potential Agrofuel Areas at NUTS2/3 level
32
Part Two – Modelling Urban Intensification Scenarios and the Potential Effects on Green Background Landscape Index
34
We can use map algebra to simulate urban intensification using a constant value… CLC1 + 3
35
CLC1 + 5
36
CLC1 + 10
37
It is interesting to note that modelled increases in urban temperatures follow the road network quite closely CLC1 + 10 CLC1 + 5 CLC1 + 3 CLC1
38
Assumptions of the Method: Urban intensification is only relevant in areas with a considerable level of urban land cover, therefore a cut off threshold value of (19%) was applied to the intensification process, with areas below that showing no increase Once again it was important to consider 100% as the maximum attainable intensification level, therefore class boundaries were defined so that values boosted to above 100% were visually confined to the 100% maximum
39
It is likely that urban intensification will affect the Green Background Landscape Index (GBLI)…
40
The change will be relatively small due to the composition of GBLI, to visualise this change the index has been reclassified into 5 colour categories
41
GBLI with Urban Intensification (+3)
42
GBLI with Urban Intensification (+5)
43
GBLI with Urban Intensification (+10)
44
Assumptions of the Method: The method accounted for the fact that there would be only small changes to the GBLI value in areas within and surrounding intense urban landscapes The next stage would be to calculate the change in GBLI within UMZ’s to account for the urban intensification
45
Using Arctoolbox “Extract by Mask” function we can model change in GBLI inside Urban Morphological Zones (UMZ) Current GBLI
46
GBLI with Urban Intensification (+3)
47
GBLI with Urban Intensification (+5)
48
GBLI with Urban Intensification (+10)
49
Assumptions of the Method: Urban intensification is only relevant in areas with a considerable level of urban land cover, therefore a cut off threshold value (19) was applied to the intensification process, with areas below that showing no increase Once again it was important to consider 100% as the maximum attainable intensification level, therefore class boundaries were defined so that the upper class boundaries were visually confined to the 100% maximum
50
Through merging spatial databases the total amount of Green Urban Area (GUA) can be represented for each UMZ, and normalised by population data to create a simple indicator relating to quality of life in urban areas
51
The Green Urban Index has been created using the formula GUI =GUA + GBLI and standardised to 100 GUI can be used to rank cities according to “greenness”, changing values according to simulated urban intensification
52
The Next Steps: Exploration of potential bio fuel crop yields (metric tonnes per hectare) in terms of specific crop types Development of qualitative economic and policy driven scenarios (reform of CAP, Biomass Action Plan etc.) to semi-quantitatively model bio fuel crop demands/production Explore potential alternative options (Biomass, mixed farming, conservation)
53
Extending the Accessibility Analyses to Agrofuel PCZ’s: It would be useful for estimation of real costs to include accessibility to markets and production units such as bio-diesel and bio-ethanol plants Important when factoring in the negative environmental impacts of the fuel source
54
Modelling Potential Environmental Impact of Agrofuel PCZ’s: -According to the hypothesis that all Natura2000 sites have high biodiversity value Useful for Environmental Impact Assessment Important when factoring in the negative environmental impacts of the fuel source First steps to spatial integration of the multifonctionality of agriculture and HNV farmland In reality, pasture, mosaic and even intense agriculture has a considerable value, the multi-functionality of land could be accounted for
55
Consideration of Water and its Dual Implications on Agrofuel: Integrate the issues of quantity (inputs) and quality (outputs) of water in function of crops and farming systems Required for environmental impact assessment (EIA) of fertiliser polluted surface runoff (Quality of water) Important when addressing crop irrigation (Quantity of water required to grow crop)
56
The interface should allow bringing together of… Multidisciplinary approaches (solving land use problems via agronomic, economic, ecologic, engineer support) Interdisciplinary approaches (linking and sharing experiences and looking for solutions between economist, agronomist, environmentalist, anthropologist, engineers) Transdisciplinary approaches (allowing diagnosis, exploration, discussion and the solving of land use problems between researchers, decision makers and affected farmers, private firms and NGOs)… …to explore and develop integrated analysis and responses for land sustainability Next big STEPS… friendly to use interface assess and simulateland changes Using existing databases and modelling tools develop a friendly to use interface, to explore, assess and simulate possible directions and impact of options of land changes in a policy context.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.