Download presentation
Presentation is loading. Please wait.
Published byJayson Powell Modified over 9 years ago
2
Minerlaogi II
3
Average Composition of the Continental Crust Weight PercentVolume Percent Si O O Table 3.4
4
Fig. 3.8 Ionic Radii of some geologically important ions
5
Silika Tetraederet
6
Silicates are classified on the basis of Si-O polymerism [SiO 4 ] 4- Independent tetrahedra Nesosilicates Examples: olivine garnet [Si 2 O 7 ] 6- Double tetrahedra Sorosilicates Examples: epidote n[SiO 3 ] 2- n = 3, 4, 6 Cyclosilicates Examples: benitoite BaTi[Si 3 O 9 ] axinite Ca 3 Al 2 BO 3 [Si 4 O 12 ]OH beryl Be 3 Al 2 [Si 6 O 18 ]
7
Silicates are classified on the basis of Si-O polymerism [SiO 3 ] 2- single chains Inosilicates [Si 4 O 11 ] 4- Double tetrahedra pyroxenes pyroxenoids amphiboles
8
Silicates are classified on the basis of Si-O polymerism [Si 2 O 5 ] 2- Sheets of tetrahedra Phyllosilicates micas talc clay minerals serpentine
9
Silicates are classified on the basis of Si-O polymerism [SiO 2 ] 3-D frameworks of tetrahedra: fully polymerized Tectosilicates quartz and the silica minerals feldspars feldspathoids zeolites low-quartz
10
Olivine: formed from single silica tetrahedra
11
Forsterite Mg 2 SiO 4 Fayalite Fe 2 SiO 4 Peridot - gem quality olivine This is a cut crystal An olivine nodule in a volcanic rock Olivine picture gallery
12
Nesosilicates: independent SiO 4 tetrahedra Olivine (100) view blue = M1 yellow = M2 b c projection
13
b c perspective Nesosilicates: independent SiO 4 tetrahedra
14
Olivine (001) view blue = M1 yellow = M2 M1 in rows and share edges M2 form layers in a-c that share corners Some M2 and M1 share edges b a Nesosilicates: independent SiO 4 tetrahedra
15
Olivine (100) view blue = M1 yellow = M2 b c M1 and M2 as polyhedra
16
Nesosilicates: independent SiO 4 tetrahedra Olivine Occurrences: –Principally in mafic and ultramafic igneous and meta-igneous rocks –Fayalite in meta-ironstones and in some alkalic granitoids –Forsterite in some siliceous dolomitic marbles Monticellite CaMgSiO 4 Ca M2 (larger ion, larger site) High grade metamorphic siliceous carbonates
17
The garnet picture gallery
18
Nesosilicates: independent SiO 4 tetrahedra Garnet (001) view blue = Si purple = B turquoise = A Garnet: A 2+ 3 B 3+ 2 [SiO 4 ] 3 “Pyralspites” - B = Al Pyrope: Mg 3 Al 2 [SiO 4 ] 3 Almandine: Fe 3 Al 2 [SiO 4 ] 3 Spessartine: Mn 3 Al 2 [SiO 4 ] 3 “Ugrandites” - A = Ca Uvarovite: Ca 3 Cr 2 [SiO 4 ] 3 Grossularite: Ca 3 Al 2 [SiO 4 ] 3 Andradite: Ca 3 Fe 2 [SiO 4 ] 3 Occurrence: Mostly metamorphic Some high-Al igneous Also in some mantle peridotites
19
Nesosilicates: independent SiO 4 tetrahedra Garnet (001) view blue = Si purple = A turquoise = B Garnet: A 2+ 3 B 3+ 2 [SiO 4 ] 3 “Pyralspites” - B = Al Pyrope: Mg 3 Al 2 [SiO 4 ] 3 Almandine: Fe 3 Al 2 [SiO 4 ] 3 Spessartine: Mn 3 Al 2 [SiO 4 ] 3 “Ugrandites” - A = Ca Uvarovite: Ca 3 Cr 2 [SiO 4 ] 3 Grossularite: Ca 3 Al 2 [SiO 4 ] 3 Andradite: Ca 3 Fe 2 [SiO 4 ] 3 Occurrence: Mostly metamorphic Pyralspites in meta-shales Ugrandites in meta-carbonates Some high-Al igneous Also in some mantle peridotites a1a1a1a1 a2a2a2a2 a3a3a3a3
20
Fig. 3.20 Linking Silicate Tetrahedra
22
Chains (polymers) of silicate anions
23
Enkeltkjeder - eks. Diopside (en pyroxen-CaMgSi2O6)
24
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Diopside: CaMg [Si 2 O 6 ] b a sin Where are the Si-O-Si-O chains??
25
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin
26
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin
27
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin
28
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin
29
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin
30
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Perspective view
31
Inosilicates: single chains- pyroxenes TM1T Creates an “I-beam” like unit in the structure.
32
Inosilicates: single chains- pyroxenes TM1T Creates an “I-beam” like unit in the structure (+)
33
The pyroxene structure is then composed of alternating I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+) (+) (+)(+) Inosilicates: single chains- pyroxenes Note that M1 sites are smaller than M2 sites, since they are at the apices of the tetrahedral chains
34
The pyroxene structure is then composed of alternation I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+) (+) Inosilicates: single chains- pyroxenes (+) (+)
35
Pyroxene Chemistry The general pyroxene formula: W 1-P (X,Y) 1+P Z 2 O 6 Where –W = Ca Na –X = Mg Fe 2+ Mn Ni Li –Y = Al Fe 3+ Cr Ti –Z = Si Al Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles
36
Pyroxene Chemistry The pyroxene quadrilateral and opx-cpx solvus Coexisting opx + cpx in many rocks (pigeonite only in volcanics) Diopside Hedenbergite Wollastonite Enstatite Ferrosilite orthopyroxenes clinopyroxenes pigeonite (Mg,Fe) 2 Si 2 O 6 Ca(Mg,Fe)Si 2 O 6 pigeonite clinopyroxenes orthopyroxenes Solvus 1200 o C 1000 o C 800 o C
37
Pyroxene Chemistry “Non-quad” pyroxenes Jadeite NaAlSi 2 O 6 Ca(Mg,Fe)Si 2 O 6 Aegirine NaFe 3+ Si 2 O 6 Diopside-Hedenbergite Ca-Tschermack’s molecule CaAl2SiO 6 Ca / (Ca + Na) 0.2 0.8 Omphacite aegirine- augite Augite Spodumene: LiAlSi 2 O 6
38
Inosilicates: double chains- amphiboles Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg) yellow = M4 (Ca) Tremolite: Ca 2 Mg 5 [Si 8 O 22 ] (OH) 2 b a sin
39
Inosilicates: double chains- amphiboles Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2 b a sin Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H
40
Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2 Same I-beam architecture, but the I-beams are fatter (double chains)
41
Inosilicates: double chains- amphiboles b a sin (+) (+) (+) (+) (+) Same I-beam architecture, but the I-beams are fatter (double chains) All are (+) on clinoamphiboles and alternate in orthoamphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2
42
Inosilicates Cleavage angles can be interpreted in terms of weak bonds in M2 sites (around I-beams instead of through them) Narrow single-chain I-beams 90 o cleavages in pyroxenes while wider double- chain I-beams 60-120 o cleavages in amphiboles pyroxeneamphibole a b
43
Cleavage in the Chain Silicates Fig. 3.24 Pyroxene Amphibole
44
See handout for more information General formula: W 0-1 X 2 Y 5 [Z 8 O 22 ] (OH, F, Cl) 2 W = Na K X = Ca Na Mg Fe 2+ (Mn Li) Y = Mg Fe 2+ Mn Al Fe 3+ Ti Z = Si Al Again, the great variety of sites and sizes a great chemical range, and hence a broad stability range The hydrous nature implies an upper temperature stability limit Amphibole Chemistry
45
Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with pyroxenes) Amphibole Chemistry Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositions Tremolite Ca 2 Mg 5 Si 8 O 22 (OH) 2 Ferroactinolite Ca 2 Fe 5 Si 8 O 22 (OH) 2 Anthophyllite Mg 7 Si 8 O 22 (OH) 2 Fe 7 Si 8 O 22 (OH) 2 Actinolite Cummingtonite-grunerite Orthoamphiboles Clinoamphiboles
46
Hornblende has Al in the tetrahedral site Geologists traditionally use the term “hornblende” as a catch-all term for practically any dark amphibole. Now the common use of the microprobe has petrologists casting “hornblende” into end-member compositions and naming amphiboles after a well-represented end-member. Sodic amphiboles Glaucophane: Na 2 Mg 3 Al 2 [Si 8 O 22 ] (OH) 2 Riebeckite: Na 2 Fe 2+ 3 Fe 3+ 2 [Si 8 O 22 ] (OH) 2 Sodic amphiboles are commonly blue, and often called “blue amphiboles” Amphibole Chemistry
47
Tremolite (Ca-Mg) occurs in meta-carbonates Actinolite occurs in low-grade metamorphosed basic igneous rocks Orthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some meta-sediments. The Fe-rich grunerite occurs in meta-ironstones The complex solid solution called hornblende occurs in a broad variety of both igenous and metamorphic rocks Sodic amphiboles are predominantly metamorphic where they are characteristic of high P/T subduction-zone metamorphism (commonly called “blueschist” in reference to the predominant blue sodic amphiboles Riebeckite occurs commonly in sodic granitoid rocks Amphibole Occurrences
49
SiO 4 tetrahedra polymerized into 2-D sheets: [Si 2 O 5 ] Apical O’s are unpolymerized and are bonded to other constituents Phyllosilicates
51
Tetrahedral layers are bonded to octahedral layers (OH) pairs are located in center of T rings where no apical O Phyllosilicates
52
Octahedral layers can be understood by analogy with hydroxides Phyllosilicates Brucite: Mg(OH) 2 Layers of octahedral Mg in coordination with (OH) Large spacing along c due to weak van der waals bonds c
53
Phyllosilicates Gibbsite: Al(OH) 3 Layers of octahedral Al in coordination with (OH) Al 3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasons Brucite-type layers may be called trioctahedral and gibbsite-type dioctahedral a1a1a1a1 a2a2a2a2
54
Phyllosilicates Kaolinite: Al 2 [Si 2 O 5 ] (OH) 4 T-layers and diocathedral (Al 3+ ) layers (OH) at center of T-rings and fill base of VI layer Yellow = (OH) TO-TO-TOTO-TO-TOTO-TO-TOTO-TO-TO vdw vdw weak van der Waals bonds between T-O groups
55
Phyllosilicates Serpentine: Mg 3 [Si 2 O 5 ] (OH) 4 T-layers and triocathedral (Mg 2+ ) layers (OH) at center of T-rings and fill base of VI layer Yellow = (OH) TO-TO-TOTO-TO-TOTO-TO-TOTO-TO-TO vdw vdw weak van der Waals bonds between T-O groups
56
Serpentine Octahedra are a bit larger than tetrahedral match, so they cause bending of the T-O layers (after Klein and Hurlbut, 1999). Antigorite maintains a sheet-like form by alternating segments of opposite curvature Chrysotile does not do this and tends to roll into tubes
57
Serpentine The rolled tubes in chrysotile resolves the apparent paradox of asbestosform sheet silicates S = serpentine T = talc Nagby and Faust (1956) Am. Mineralogist 41, 817-836. Veblen and Busek, 1979, Science 206, 1398-1400.
58
Phyllosilicates Pyrophyllite: Al 2 [Si 4 O 10 ] (OH) 2 T-layer - diocathedral (Al 3+ ) layer - T-layer TOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOT vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)
59
Phyllosilicates Talc: Mg 3 [Si 4 O 10 ] (OH) 2 T-layer - triocathedral (Mg 2+ ) layer - T-layer TOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOT vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)
60
Phyllosilicates Muscovite: K Al 2 [Si 3 AlO 10 ] (OH) 2 (coupled K - Al IV ) T-layer - diocathedral (Al 3+ ) layer - T-layer - K TOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOT K between T - O - T groups is stronger than vdw
61
Phyllosilicates Phlogopite: K Mg 3 [Si 3 AlO 10 ] (OH) 2 T-layer - triocathedral (Mg 2+ ) layer - T-layer - K TOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOT K between T - O - T groups is stronger than vdw
62
A Summary of Phyllosilicate Structures Phyllosilicates Fig 13.84 Klein and Hurlbut Manual of Mineralogy, © John Wiley & Sons
64
Fig. 3.25 Clay: a sheet silicate
65
Chlorite: (Mg, Fe) 3 [(Si, Al) 4 O 10 ] (OH) 2 (Mg, Fe) 3 (OH) 6 = T - O - T - (brucite) - T - O - T - (brucite) - T - O - T - Very hydrated (OH) 8, so low-temperature stability (low-T metamorphism and alteration of mafics as cool) Phyllosilicates
66
Why are there single-chain-, double-chain-, and sheet-polymer types, and not triple chains, quadruple chains, etc?? “Biopyriboles”
67
It turns out that there are some intermediate types, predicted by J.B. Thompson and discovered in 1977 Veblen, Buseck, and Burnham Cover of Science: anthophyllite (yellow) reacted to form chesterite (blue & green) and jimthompsonite (red) Streaked areas are highly disordered “Biopyriboles” Cover of Science, October 28, 1977 © AAAS
68
HRTEM image of anthophyllite (left) with typical double-chain width Jimthompsonite (center) has triple-chains Chesterite is an ordered alternation of double- and triple-chains anthophyllite jimthompsonite chesterite Fig. 6, Veblen et al (1977) Science 198 © AAAS
69
Disordered structures show 4-chain widths and even a 7-chain width Obscures the distinction between pyroxenes, amphiboles, and micas (hence the term biopyriboles: biotite-pyroxene-amphibole) “Biopyriboles” Fig. 7, Veblen et al (1977) Science 198 © AAAS
71
Tectosilicates After Swamy and Saxena (1994) J. Geophys. Res., 99, 11,787-11,794.
72
Tectosilicates Low Quartz 001 Projection Crystal Class 32
73
Tectosilicates High Quartz at 581 o C 001 Projection Crystal Class 622
74
Tectosilicates Cristobalite 001 Projection Cubic Structure
75
Tectosilicates Stishovite High pressure Si VI
76
Tectosilicates Low Quartz Stishovite Si IV Si VI
77
Quartz structure
79
Fig. 3.27 Banded Agate
80
Fig. 3.28 Green Feldspar
81
Feltspat
82
Ortoklas/Mikroklin Albitt Anortitt
83
Avblanding av feltspat ved avkjøling
84
Plagioklas Kalifeltspat (mikroklin)
85
Tectosilicates Feldspars Albite: NaAlSi 3 O 8 Substitute two Al 3+ for Si 4+ allows Ca 2+ to be added Substitute Al 3+ for Si 4+ allows Na + or K + to be added
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.