Download presentation
Presentation is loading. Please wait.
Published byHorace Washington Modified over 9 years ago
1
Model View Controller Architectural Pattern and Observer Pattern
DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING CONCORDIA UNIVERSITY Model View Controller Architectural Pattern and Observer Pattern C++ Design Patterns Joey Paquet October 19, 2011
2
The MVC Architectural Pattern
:: Introduction MVC was first introduced by Trygve Reenskaug at the Xerox Palo Alto Research Center in 1979. Part of the basic of the Smalltalk programming environment. Widely used for many object-oriented designs involving user interaction. A three-tier architectural model: MVC and Observer in C++
3
The MVC Architectural Pattern
:: Model Manages the behavior and data of the application domain, Responds to requests for information about its state (usually from the view), Responds to instructions to change state (usually from the controller). In event-driven systems, the model notifies observers (usually views) when the information changes so that they can react. (see observer pattern) In enterprise software, a model often serves as a software approximation of a real-world process. In a game, the model is represented by the classes defining the game entities, which are embedding their own state and actions. MVC and Observer in C++
4
The MVC Architectural Pattern
:: View Renders the model into a form suitable for interaction, typically a user interface element. Multiple views can exist for a single model for different purposes. The view renders the contents of a portion of the model’s data. If the model data changes, the view must update its presentation as needed. This can be achieved by using: a push model, in which the view registers itself with the model for change notifications (see the observer pattern) a pull model, in which the view is responsible for calling the model when it needs to retrieve the most current data. MVC and Observer in C++
5
The MVC Architectural Pattern
:: Controller Receives user input and initiates a response by making calls on appropriate model objects. Accepts input from the user and instructs the model to perform actions based on that input. The controller translates the user's interactions with the view it is associated with, into actions that the model will perform. A controller may also spawn new views upon user demand. MVC and Observer in C++
6
The MVC Architectural Pattern
:: Interactions between Model, View and Controller Upon creation of a Model-View-Controller triad: The view registers as an observer on the model. Any changes to the underlying data of the model immediately result in a broadcast change notification, which all associated views receives (in the push back model). Note that the model is not aware of the view or the controller -- it simply broadcasts change notifications to all interested observers. The controller is bound to the view and can react to any user interaction provided by this view. This means that any user actions that are performed on the view will invoke a method in the controller class. The controller is given a reference to the underlying model. MVC and Observer in C++
7
The MVC Architectural Pattern
:: Interactions between Model, View and Controller Once a user interacts with the view, the following actions occur: The view recognizes that a GUI action -- for example, pushing a button or dragging a scroll bar -- has occurred, e.g using a listener method that is registered to be called when such an action occurs. The mechanism varies depending on the technology/library used. In the listener method, the view calls the appropriate method on the controller. The controller translates this signal into an appropriate action in the model, which will in turn possibly be updated in a way appropriate to the user's action. If the model has been altered, it notifies interested observers, such as the view, of the change. In some architectures, the controller may also be responsible for updating the view. Again, technical details may vary according to technology/library used. MVC and Observer in C++
8
The Observer Pattern :: Definition & Applicability - I Motivation
The cases when certain objects need to be informed about the changes occurring in other objects are frequent. To have a good design means to decouple as much as possible and to reduce the dependencies. The Observer Design Pattern can be used whenever a subject has to be observed by one or more observers. Intent Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically. This pattern is a cornerstone of the Model-View-Controller architectural design, where the Model implements the mechanics of the program, and the Views are implemented as Observers that are as much uncoupled as possible to the Model components. C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 8 8 8 8 8 8 8 8
9
The Observer Pattern :: Definition & Applicability - II
“Model” classes “View” classes C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 9 9 9 9 9 9 9 9 9 9
10
The Observer Pattern :: Definition & Applicability - III
The participants classes in the Observer pattern are: Observable - interface or abstract class defining the operations for attaching and de-attaching observers to the client. In the GOF book this class/interface is known as Subject. ConcreteObservable - concrete Observable class. It maintain the state of the observed object and when a change in its state occurs it notifies the attached Observers. Observer - interface or abstract class defining the operations to be used to notify the Observer object. ConcreteObserverA, ConcreteObserverB - concrete Observer implementations. C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 10 10 10 10 10 10 10 10 10
11
The Observer Pattern :: Definition & Applicability - IV Behavior
The client class instantiates the ConcreteObservable object. Then it instantiate and attaches the concrete observers to it using the methods defined in the Observable interface. Each time the (observable) state of the subject is changing, it notifies all the attached Observers using the methods defined in the Observer interface. When a new Observer is added to the application, all we need to do is to instantiate it in the client class and to add attach it to the Observable object. The classes already created will remain mostly unchanged. C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 11 11 11 11 11 11 11 11 11 11
12
The Observer Pattern :: Example - I
// Subject class, also known as “Observable” // class Subject { public: virtual ~Subject(); virtual void Attach(Observer* o){ //Attach an observer to the Subject _observers->Insert(_observers->end(), o);} virtual void Detach(Observer* o){ //Detach an observer from the Subject _observers->remove(o);} virtual void Notify(){ //Notify all observers upon state change ListIterator<Observer*>i(_observers); for (i.First(); !i.IsDone(); i.Next()) { i.CurrentItem()->Update(this);} protected: Subject(); private: //List of all observers plugged onto the Subject List<Observer*> *_observers; }; C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 12 12 12 12 12 12 12 12 12 12 12
13
The Observer Pattern :: Example - II
// A Sub-class of Subject: a Clock Timer // class ClockTimer : public Subject { public: ClockTimer(); int GetHour(){return hour}; int GetMinute(){return minute}; int GetSecond(){return second}; void Tick(){ // update internal time-keeping state // ... // The Observable object notifies all its registered observers Notify();}; private: int hour; int minute; int second; }; In green are the changes to be applied to the class to be made an observable class. C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 13 13 13 13 13 13 13 13 13 13 13 13
14
The Observer Pattern :: Example - III
//Observer Class // class Observer { public: virtual ~Observer(); virtual void Update(Subject* theChangeSubject) = 0; protected: Observer(); }; The Observer class is a virtual class C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 14 14 14 14 14 14 14 14 14 14 14 14 14
15
The Observer Pattern :: Example - IV
// A specific Observer to observe ClockTimers: DigitalClock // class DigitalClock: public Observer { public: DigitalClock(ClockTimer* s){ //Upon instantiation, attaches itself to a ClockTimer _subject = s; _subject->Attach(this);}; ~DigitalClock(){ //Upon destruction, detaches itself from its ClockTimer _subject->Detach(this);}; void Update(Subject* theChangedSubject){ //if the notification concerns my own subject, redraw my clock’s reading if(theChangedSubject == _subject) draw();}; void draw(){ int hour = _subject->GetHour(); int minute = _subject->GetMinute(); int second = _subject->GetSecond(); // draw operation}; private: ClockTimer *_subject; }; C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 15 15 15 15 15 15 15 15 15 15 15 15 15 15
16
The Observer Pattern :: Example - V
int main(void) { //Create a ClockTimer to be observed ClockTimer *timer = new ClockTimer; //Create a DigitalClock that is connected to the ClockTimer DigitalClock *digitalClock = new DigitalClock(timer); //Advancing the ClockTimer updates the DigitalClock //as Tick() calls Update() after it changed its state timer->Tick(); return 0; } C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns C++ Design Patterns 16 16 16 16 16 16 16 16 16 16 16 16 16 16
17
Resources [1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press, New York, 1977. [2] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns – Elements of Reusable Object-Oriented Software, Adisson-Wesley, 1995. [3] James W. Cooper, The Design Patterns – Java Companion Elements of Reusable Object-Oriented Software, Adisson-Wesley, 1998. [4] James O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading, MA., 1992. [5] Object-oriented design patterns [6] Robert Eckstein, Java SE Application Design With MVC, Oracle Technology Network, March 2007. MVC and Observer in C++
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.