Presentation is loading. Please wait.

Presentation is loading. Please wait.

Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester.

Similar presentations


Presentation on theme: "Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester."— Presentation transcript:

1 Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

2 Reported Interstellar and Circumstellar Molecules N=2 N=3 N=4 N = 5N = 6N = 7N = 8N = 9N = 10 H2H2 AlClH3+H3+C2SC2SNH 3 CH 4 CH 3 OHCH 3 NH 2 HCOOCH 3 (CH 3 ) 2 O(CH 3 ) 2 CO CHPNCH 2 OCSH3O+H3O+ SiH 4 CH 3 SHCH 3 CCHCH 3 C 2 CNC 2 H 5 OHCH 3 C 4 CN CH + SiNNH 2 MgCNH 2 COCH 2 NHC2H4C2H4 CH 3 CHOC6H2C6H2 C 2 H 5 CN ?glycine? NHSiOH2OH2OMgNCH 2 CSH2C3H2C3 CH 3 CN c- CH 2 OCH 2 C7HC7HCH 3 C 4 H CH 3 CH 2 CHO OHSiSH2SH2SNaCNl-C 3 Hl-C 3 H 2 CH 3 NCCH 2 CHCN HOCH 2 CHO C8HC8H (CH 2 OH) 2 HFCO + C2HC2HSO 2 c-C 3 Hc-C 3 H 2 H 2 CCHOHC 4 CNCH 3 COOHHC 6 CN C2C2 SO + HCNN2ON2OHCCHH 2 CCNNH 2 CHOC6HC6H H 2 CCCHCN CH 3 CONH 2 CNPOHNCSiCNHCNH + H 2 NCNHC 3 NH + H 2 CCHOH H2C6H2C6 COSHHCOCO 2 H 2 CNCH 2 COH2C4H2C4 CH 2 CHCHO N = 11 CSAlFHCO + c-SiC 2 c-C 3 HHCOOHC5HC5HC6H-C6H- C8H-C8H- HC 8 CN CP FeOHOC + SiNCHCCNC4HC4HC5NC5NCH 3 C 6 H NOSiC HN 2 + AlNC HNCOHC 2 CNC5OC5O N = 12 NSCF + HNO HCPHOCO + HC 2 NCC5SC5S C6H6C6H6 SO? N 2 ? HCS + HNCSC 4 Sic-C 3 H 2 O HCl C3C3 C 2 CNC5C5 CH 2 CNH N = 13 NaCl C2OC2OC3OC3OC4NC4NHC 10 CN KCl C3SC3SH 2 COH + SiC 3 C4H-C4H-

3 ANIONS AT LAST All in family C n H - TMC-1, a cold interstellar core: n=6, 8 (McCarthy et al.; Bruenken et al.) L1527, a protostar: n=6 (Sakai et al.) IRC+10216, an extended circumstellar envelope: C n H - ; n = 4,6,8 (McCarthy et al.; Cernicharo et al.; Remijan et al.; Kasai et al.)

4 10 K 10(4) cm-3 H2 dominant sites of star formation Dense Interstellar Cloud Cores Gas + dust Ion-molecule chemistry leads to many positive ions and other exotic species.

5 L1527: continuum map from protostar

6 IRC+10216 >50 molecules detected: CO, C 2 H 2, HC 9 N... Newly discovered anions C 6 H -, C 4 H -, C 8 H - Figures from Mauron & Huggins (2000) and Guelin et al. (1999)

7 The Horsehead Nebula, a PDR

8 Negative Ion Production Herbst (1981) considered the possible abundance of anions in cold regions of the ISM based on radiative attachment: A + e → A - + h and estimated their maximum abundance to be app.1% of the neutral counterparts. See Petrie (1996) for other mechanisms such as dissociative attachment: e + BC  B - + C (normally endoergic)

9 Theory of Radiative Attachment C n H + e ↔ C n H - * → C n H - + h (originally done for carbon clusters by Terzieva & Herbst 2000) Competition occurs between the re-emission of the electron and stabilization of the complex. Phase-space theory shows that the efficiency is much enhanced by large binding energies (electron affinities) of 3-4 eV and large sizes if phase space approach used. Other possibility: resonance into dipole-bound excited state.

10 Results for C n H - No. of C atoms 1-3 4 5 6 7 k att (cm 3 s -1 )(300 K) tiny 2 10(-9) 9 10(-10) 6 10(-8) 2 10(-7) High electron affinities near 4 eV!!! Estimated rates; better ones in progress

11 Destruction of Anions 1) photodetachment: large cross section starting at relatively low energies in the visible. (E (photon) > E.A.) 2) reactions with atoms (associative detachment); e.g., C n H - + H → C n H 2 + e 3) normal ion-molecule reactions 4) ion-ion recombination (A + - A - )

12 Millar et al. (2007) C 6 H - observation C 6 H observation

13 TMC-1 Abundance Ratios Anion/Neutral Observed* C 4 H <0.00014 C 6 H 0.016(3) C 8 H 0.05(1) C 10 H Anion/Neutral Calculated# 0.0013 0.052 0.042 0.041 * Bruenken et al. (2007); # Millar et al. (2007); calculations at early-time.

14 C 4 H - :C 6 H - :C 8 H - ratio: Model: 1:17:6 Observation: 1:12:3 IRC+10216 results Model: –N(C 4 H - ) = 1.0x10 13 cm -2 –N(C 4 H) = 1.3x10 15 cm -2 –Ratio = 0.008 –N(C 6 H - ) = 1.7x10 14 cm -2 –N(C 6 H) = 5.7x10 14 cm -2 –Ratio = 0.30 –N(C 8 H - ) = 5.8x10 13 cm -2 –N(C 8 H) = 2.1x10 14 cm -2 –Ratio = 0.28 Observation: –N(C 4 H - ) = 5.8x10 11 cm -2 –N(C 4 H) = 2.4x10 15 cm -2 –Ratio = 0.00025 –N(C 6 H - ) = 6.9x10 12 cm -2 –N(C 6 H) = 8.0x10 13 cm -2 –Ratio = 0.09 –N(C 8 H - ) = 2x10 12 cm -2 –N(C 8 H) = 8x10 12 cm -2 –Ratio = 0.25 Prediction: –N(C 10 H - ) = 2.3x10 13 cm -2

15 Horsehead PDR results Model: –n(C 4 H - ) = 8.4x10 -11 n(H 2 ) –n(C 4 H) = 2.4x10 -9 n(H 2 ) –Ratio = 0.035 –n(C 6 H - ) = 4.5x10 -11 n(H 2 ) –n(C 6 H) = 9.6x10 -12 n(H 2 ) –Ratio = 4.7 Observation: –n(C 4 H) = 3x10 -9 n(H 2 ) –n(C 6 H) = 10 -10 n(H 2 ) Prediction: –n(C 8 H - ) = 9.3x10 -11 n(H 2 ) –n(C 10 H - ) = 5.5x10 -11 n(H 2 )

16 Summary High observed anion abundances are reproduced by our models –Modelled interstellar anion-to neutral ratios are ~ 0.01 to 5 –Dependent primarily upon electron density, radiation field strength, gas-phase H, H +, C + abundances TMC-1 model fits observations reasonably well IRC+10216 model over-predicts abundances Observed relative anion abundances support electron attachment theory (phase space) We predict observable abundances of C 4 H -, C 6 H -, C 8 H - in CSEs, PDRs and dense clouds. C 10 H - at the limit of detectability Some anion reaction rates are currently uncertain: –Radiative electron attachment (resonances?) –Photodetachment (resonances?)


Download ppt "Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester."

Similar presentations


Ads by Google