Download presentation
Presentation is loading. Please wait.
Published byRussell Ramsey Modified over 9 years ago
1
Luciano L. Pappalardo University of Ferrara Selected TMD results from HERMES L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-18 2013
2
The full phase-space distribution of the partons encoded in the Wigner function 2 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 The phase-space distribution of partons
3
The full phase-space distribution of the partons encoded in the Wigner function TMDs GPDs cannot be directly accessed experimentally integrated quantities The phase-space distribution of partons 3 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
4
TMDs The non-collinear structure of the nucleon Sivers worm-gears Boer-Mulders pretzelosity helicity transversity momentum Sivers worm-gears GPDs The full phase-space distribution of the partons encoded in the Wigner function cannot be directly accessed experimentally integrated quantities 4 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
5
The non-collinear structure of the nucleon Sivers worm-gears Boer-Mulders pretzelosity helicity transversity momentum Sivers worm-gears FF Fragmentation Functions (FF) hadronhadron Collins FF chiral-odd unpol. FF chiral-even 5 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
6
The SIDIS cross-section } 6 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 FF
7
The SIDIS cross-section } beam polarization unpolarized beam and target polarization target polarization 7 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
8
The SIDIS cross-section } 8 L.L. Pappalardo - SPIN2012 – JINR, Dubna, Russia – September 17-22 2012 18 Structure Functions Leading twist Sub-leading Twist Distribution Functions Fragmentation Functions h
9
Selected twist-2 and twist-3 1-hadron SIDIS results 9 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
10
Distribution FunctionsFragmentation Functions h } Sivers function Describes correlation between quark transverse momentum and nucleon transverse polarization 10 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
11
Sivers amplitudes significantly positive slightly positive consistent with zero consistent with Sivers func. of opposite sign for u and d quarks (isospin-symmetry) [Anselmino et al.,Eur.Phys.J.A3,2009] [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002] 11 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
12
Sivers amplitudes significantly positive slightly positive consistent with zero (isospin-symmetry) [Anselmino et al.,Eur.Phys.J.A3,2009] consistent with Sivers func. of opposite sign for u and d quarks [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002] 12 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 significantly positive slightly positive
13
Sivers kaons amplitudes: open questions + /K + production dominated by u-quarks, but: 13 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
14
Sivers kaons amplitudes: open questions + /K + production dominated by u-quarks, but: 14 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 different role of various sea quarks ? ?
15
no effect for pions, but hint of a systematic shifts for kaons Sivers kaons amplitudes: open questions different role of various sea quarks ? ? + /K + production dominated by u-quarks, but: 15 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 ? Higher-twist contrib. for Kaons only in low-Q 2 region significant deviation each x-bin divided into two Q 2 bins
16
Distribution FunctionsFragmentation Functions h } Pretzelosity Describes correlation between quark transverse momentum and transverse spin in a transversely pol. nucleon Sensitive to non-spherical shape of the nucleon 16 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
17
…suppressed by two powers of P h w.r.t. Sivers amplitudes All amplitudes consistent with zero 17 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
18
Distribution FunctionsFragmentation Functions h } Describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon! Can be accessed in LT DSAs 18 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 }
19
19 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light-cone constituent quark model dashed line: interf. L=0, L=1 dotted line: interf L=1, L=2 The only TMD that is both chiral-even and naïve-T-even requires interference between wave function components that differ by 1 unit of OAM quark orbital motion inside nucleons
20
The only TMD that is both chiral-even and naïve-T-even requires interference between wave function components that differ by 1 unit of OAM quark orbital motion inside nucleons Accessible in LT DSAs: 20 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light-cone constituent quark model dashed line: interf. L=0, L=1 dotted line: interf L=1, L=2
21
21 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light-cone constituent quark model dashed line: interf. L=0, L=1 dotted line: interf L=1, L=2 Simplest way to probe The only TMD that is both chiral-even and naïve-T-even requires interference between wave function components that differ by 1 unit of OAM quark orbital motion inside nucleons Accessible in LT DSAs:
22
similar observations from Hall-A and COMPASS slightly positive ? consistent with zero positive!! 22 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
23
23 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
24
Distribution FunctionsFragmentation Functions h } Describes the probability to find transversely polarized quarks in a longitudinally polarized nucleon 24 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 some models support the simple relation
25
Amplitudes consistent with zero for all mesons and for both H and D targets Deuterium targetHydrogen target A. Airapetian et al, Phys. Lett. B562 (2003) A. Airapetian et al, Phys. Rev. Lett. 84 (2000) 25 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
26
A. Airapetian et al, Phys. Lett. B562 (2003) 26 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 Positive: Hydrogen results larger than Deuteron (u-quark dominance) Positive: Hydrogen and Deuteron of same size Deuteron positive, Hydrogen 0 (u-quark dominance)
27
Distribution Functions } Subleading twist L.L. Pappalardo – Structure of Nucleons and Nuclei – Como – June 10-14 2013 Sensitive to worm-gear, sivers, transversity + higher-twist DF and FF 27 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
28
Subleading-twist sin( S ) Fourier component sensitive to worm-gear, Sivers function, Transversity, etc significant non-zero signal for - and K - ! Large and negative negative 28 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
29
Subleading-twist sin( S ) Fourier component sensitive to worm-gear, Sivers function, Transversity, etc significant non-zero signal for - and K - ! low-Q 2 amplitude larger hint of Q 2 dependence for - Large and negative negative 29 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
30
2-hadron SIDIS results Following formalism developed by Steve Gliske Find details in Transverse Target Moments of Dihadron Production in Semi-inclusive Deep Inelastic Scattering at HERMES S. Gliske, PhD thesis, University of Michigan, 2011 30 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 http://www-personal.umich.edu/~lorenzon/research/HERMES/PHDs/Gliske-PhD.pdf
31
A short digression on di-hadron fragmentation functions Standard definition of di-hadron FF assume no polarization of final state hadrons (pseudo-scalar mesons) or define mixtures of certain partial waves as new FFs The cross-section is identical to the ones in literature, the only difference is the interpretation of the FFs: 31 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
32
The di-hadron SIDIS cross-section 32 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
33
The di-hadron SIDIS cross-section 33 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 JHEP 06 (2008) 017
34
The di-hadron SIDIS cross-section 34 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013 JHEP 06 (2008) 017
35
Conclusions A rich phenomenology and surprising effects arise when parton transverse momentum is not integrated out! Transverse effects and orbital motion of partons are now established as key ingredients of the nucleon internal dynamics 35 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
36
Conclusions A rich phenomenology and surprising effects arise when parton transverse momentum is not integrated out! Transverse effects and orbital motion of partons are now established as key ingredients of the nucleon internal dynamics The HERMES experiment has played a pioneering role in these studies: 36 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
37
Back-up 37 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
38
Distribution FunctionsFragmentation Functions h } Describes correlation between quark transverse momentum and transverse spin in unpolarized nucleon Boer-Mulders function 38 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
39
The cos2 amplitudes negative positive A. Airapetian et al, Phys. Rev. D 87 (2013) 012010 39 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
40
The cos2 amplitudes negative positive Large and negative A. Airapetian et al, Phys. Rev. D 87 (2013) 012010 http://www-hermes.desy.de/cosnphi/ Analysis multi-dimensional in x, y, z,and Pt Create your own projections of results through: 40 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
41
The cos amplitudes negative Large and negative Consist. with 0 A. Airapetian et al, Phys. Rev. D 87 (2013) 012010 http://www-hermes.desy.de/cosnphi/ Analysis multi-dimensional in x, y, z,and Pt Create your own projections of results through: 41 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
42
Distribution FunctionsFragmentation Functions h } Transversity Describes probability to find transversely polarized quarks in a transversely polarized nucleon 42 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
43
Consistent with Belle/BaBar measurements in e + e - Collins amplitudes positive consistent with zero large and negative! (isospin-symmetry) significantly positive consistent with zero [Airapetian et al., Phys. Lett. B 693 (2010) 11-16] Soffer bound xh 1 (x) d u xh 1 (x, k ) T u T d Anselmino et al. Phys. Rev. D 75 (2007) 43 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
44
} Distribution Functions 44 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
45
} open circles 0.2<z<0.5 full circles 0.5<z<0.8 open squares: 0.8<z<1.0 A. Airapetian et al, Phys. Lett. B 648 (2007) 1996-2000 data 45 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
46
H target, 2000-2007 data 0.2<z<0.7 Released yesterday!! 46 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
47
Released yesterday!! D target, 2000-2007 data 0.2<z<0.7 47 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
48
The sin(2 + S ) Fourier component arises solely from longitudinal (w.r.t. virtual photon direction) component of the target spin related to UL Fourier comp: sensitive to worm-gear suppressed by one power of P h w.r.t. Collins and Sivers amplitudes no significant signal observed (except maybe for K+) 48 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
49
The subleading-twist sin(2 - S ) Fourier component sensitive to worm-gear, Pretzelosity and Sivers function: suppressed by one power of P h w.r.t. Collins and Sivers amplitudes no significant non-zero signal observed 49 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
50
(a phenomenological explanation of the Collins effect) In the cross-section the Collins FF is always paired withy a distrib. function involving a transv. pol. quark. A short digression on the Lund/Artru string fragmentation model 50 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
51
1 pseudo-scalar meson (PSM) 1 Longitudinal VM 2 transvrse VM A short digression on the Lund/Artru string fragmentation model 51 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
52
“gluon radiaton model” vs. Lund/Artru model The Lund/Artru model only accounts for favored Collins fragmentation. An extension of the model (the gluon radiation model), elaborated by S. Gliske accounts for the disfavored case Lund/Artu Gluon radiation Di-quark has q.n. of vacuum Struck quark joins the anti-quark in the final state favored fragment. Di-quark has q.n. of observed final state Produced quark joins the anti-quark in the final state disfavored fragment. 52 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
53
…and now let’s look at the results Fragment. processFav/disfavDeflectionSign of amplitude fav PSM disfav PSM fav VM< 0 disfav VM< 0 mixed VM0 or < 0 from data from models u dominance 53 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
54
…and now let’s look at the results Fragment. processFav/disfavDeflectionSign of amplitude fav PSM disfav PSM fav VM< 0 disfav VM< 0 mixed VM0 or < 0 from data from models u dominance 54 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
55
Aerogel n=1.03 C 4 F 10 n=1.0014 hadron separation lepton-hadron > 98% TRD, Calorimeter, preshower, RICH: ~ 98%, K ~ 88%, P ~ 85% The HERMES experiment at HERA 55 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
56
Siver amplitudes: additional studies No systematic shifts observed between high and low Q 2 amplitudes for both + and K + No indication of important contributions from exclusive VM 56 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
57
The pion-difference asymmetry Contribution from exclusive 0 largely cancels out! significantly positive Sivers and Collins amplitudes are obtained measured amplitudes are not generated by exclusive VM contribution Contribution by decay of exclusively produced vector mesons ( 0, , ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7. a new observable 57 L.L. Pappalardo – Baryons 2013 – Glasgow – June 24-28 2013
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.