Presentation is loading. Please wait.

Presentation is loading. Please wait.

June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole.

Similar presentations


Presentation on theme: "June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole."— Presentation transcript:

1 Klaus.Kirch@psi.ch1Krakow, June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole moments Systems to work with and their connection to CP Various comments on the way International status and expectations Meson2010, June 14th, 2010

2 Klaus.Kirch@psi.ch2Krakow, June 2010 What caused the Baryon asymmetry ? Observed*: (n B -n B ) / n  = 6 x 10 -10 SM expectation: (n B -n B ) / n  ~ 10 -18 Sakharov 1967: B-violation C & CP-violation non-equilibrium [ JETP Lett. 5 (1967) 24] * WMAP + COBE, 2003 n B / n  = (6.1 ± ) x 10 -10 0.3 0.2 _ _

3 Klaus.Kirch@psi.ch3Krakow, June 2010 EDM and symmetries + _ + _ + _ P T A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau

4 Klaus.Kirch@psi.ch4Krakow, June 2010 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13 Adapted from: Pospelov, Ritz, Ann. Phys. 318 (2005) 119,ThO) EDMs of paramagnetic atoms & molecules Tl,Cs..,YbF, PbO,ThO,HfF +,WC.. neutron & proton EDMs EDMs of diamagnetic atoms Hg, Xe, Ra, Rn..  Solid state EDM effects GdIG,GdYIG, (EU,Ba)TiO 3 Astrophysical EDM effects neutron stars Origin of EDMs

5 Klaus.Kirch@psi.ch5Krakow, June 2010 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13 Adapted from: Pospelov, Ritz, Ann. Phys. 318 (2005) 119,ThO) EDMs of paramagnetic atoms & molecules Tl,Cs..,YbF, PbO,ThO,HfF +,WC.. neutron & proton EDMs EDMs of diamagnetic atoms Hg, Xe, Ra, Rn..  Solid state EDM effects GdIG,GdYIG, (EU,Ba)TiO 3 Astrophysical EDM effects? neutron stars,.. Origin of EDMs This is what we need

6 Klaus.Kirch@psi.ch6Krakow, June 2010 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13 Adapted from: Pospelov, Ritz, Ann. Phys. 318 (2005) 119,ThO) EDMs of paramagnetic atoms & molecules Tl,Cs..,YbF, PbO,ThO,HfF +,WC.. neutron & proton EDMs EDMs of diamagnetic atoms Hg, Xe, Ra, Rn..  Solid state EDM effects GdIG,GdYIG, (EU,Ba)TiO 3 Astrophysical EDM effects? neutron stars,.. Origin of EDMs This is what we need These we can access

7 Klaus.Kirch@psi.ch7Krakow, June 2010 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13 Adapted from: Pospelov, Ritz, Ann. Phys. 318 (2005) 119,ThO) EDMs of paramagnetic atoms & molecules Tl,Cs..,YbF, PbO,ThO,HfF +,WC.. neutron & proton EDMs EDMs of diamagnetic atoms Hg, Xe, Ra, Rn..  Solid state EDM effects GdIG,GdYIG, (EU,Ba)TiO 3 Astrophysical EDM effects? neutron stars,.. Origin of EDMs This is what we need These we can access These should be deduced

8 Klaus.Kirch@psi.ch8Krakow, June 2010 M. Raidal et al., Eur. Phys. J. C 57 (2008) 13 Adapted from: Pospelov, Ritz, Ann. Phys. 318 (2005) 119,ThO) EDMs of paramagnetic atoms & molecules Tl,Cs…,YbF, PbO,ThO,HfF +,WC.. neutron & proton EDMs EDMs of diamagnetic atoms Hg, Xe, Ra, Rn..  Solid state EDM effects GdIG,GdYIG, (EU,Ba)TiO 3 Astrophysical EDM effects, neutron stars,.. Direct limits Active R&D Origin of EDMs

9 Klaus.Kirch@psi.ch9Krakow, June 2010 EDM-Search Strategy I Today: Discovery experiments not known which EDM will show up first search in as many accessible complementary systems as possible Once discovered: Increase precision (experiment and theory) Complementary EDM results will constrain models of new physics or even single out the origin of the observed effects

10 Klaus.Kirch@psi.ch10Krakow, June 2010 EDM-Search Strategy II Maximize experimental sensitivity need large polarized sample statistics need large electric fields need excellent magnetic field control the signal is due to the interaction of minute EDMs with an electric field in the presence of magnetic moments and magnetic fields many background and noise sources and false effects exist, usually related to the electro- magnetic fields

11 Klaus.Kirch@psi.ch11Krakow, June 2010 Standard Model EDM-expectations? Leptons: electroweak negligible Neutron, proton, nuclei: electroweak negligible, strong?

12 Klaus.Kirch@psi.ch12Krakow, June 2010 Standard model lepton EDMs Fourth order electroweak, F. Hoogeveen: The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 241 (1990) 322 … + new physics?

13 Klaus.Kirch@psi.ch13Krakow, June 2010 Fourth order electroweak, F. Hoogeveen: The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 241 (1990) 322 … + new physics? Much greater sensitivity to new, CP-violating physics! Completely negligible at any experimental sensitivity we can imagine today! Standard model lepton EDMs

14 Klaus.Kirch@psi.ch14Krakow, June 2010 Fourth order electroweak, F. Hoogeveen: The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 241 (1990) 322 … + new physics? Much greater sensitivity to new, CP-violating physics! Completely negligible at any experimental sensitivity we can imagine today! Standard model lepton EDMs Expect from SM, approximately: d e ≤ 10 -38 e cm d  ≤ 10 -36 e cm d  ≤ 10 -35 e cm Experimentally so far: d e < 2 x 10 -27 e cm d  < 2 x 10 -19 e cm d  < 3 x 10 -17 e cm

15 10 -27 10 -28 excluded

16 Klaus.Kirch@psi.ch16Krakow, June 2010 The history of neutron EDM limits 10 -26 10 -20 10 -26 1950 2000 EDM upper limit [e cm] Smith, Purcell, Ramsey PR108(1957)120 [e cm]. Electro-weak standard model expectation: ~10 -32 e cm RAL-Sussex-ILL d n < 2.9 x 10 –26 e cm C.A.Baker et al., PRL 97 (2006) 131801

17 Klaus.Kirch@psi.ch17Krakow, June 2010 10 -26 10 -20 10 -26 1950 2000 EDM upper limit [e cm] [e cm] The strong CP problem. d n ≈ 10 -16 e cm  QCD  QCD < 10 -10 ~ L QCD ≈ L QCD + g 2 /(32  2 )  QCD GG  QCD =0 ~ Why is  QCD so small ? QCD

18 Klaus.Kirch@psi.ch18Krakow, June 2010 The SUSY CP problem. 10 -26 10 -20 10 -26 1950 2000 EDM upper limit [e cm] [e cm] d n ≈ 10 -23 e cm ( ) sin  SUSY 300 GeV/c M SUSY 2 2 SUSY Why is  SUSY so small ? Pospelov, Ritz, Ann. Phys. 318(2005)119 for M SUSY = 500GeV, tan  = 3 (for neutron and electron!)

19 Klaus.Kirch@psi.ch19Krakow, June 2010 The state of the art … ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805

20 Klaus.Kirch@psi.ch20Krakow, June 2010 … and some comments: The state of the art … ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805

21 Klaus.Kirch@psi.ch21Krakow, June 2010 … and some comments: enhancement factor smaller  limit weaker with additional assumption concerning eN interaction The state of the art … 205 Tl is not the most precise EDM experiment, but ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805

22 Klaus.Kirch@psi.ch22Krakow, June 2010

23 Klaus.Kirch@psi.ch23Krakow, June 2010 … and some comments: suppression of order 10 3 The state of the art … 199 Hg is the most precise EDM experiment by 3 orders, but ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805

24 Klaus.Kirch@psi.ch24Krakow, June 2010 … and some comments: The state of the art … ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805 The muon entry is the only one measured with charged particles. The experiment was performed in a storage ring, the technique could be considerably improved in the future. It also serves as a demonstration for storage ring EDMs that are planned with protons (BNL) and deuterons (COSY) and may be other ions.

25 Klaus.Kirch@psi.ch25Krakow, June 2010 … and some comments: The state of the art … ClassEDMExp. bound [ecm] Reference bare lepton  < 1.8 x 10 -19 PRD80(2009)052008 nucleonn< 2.9 x 10 -26 PRL97(2006)131801 diamagnetic 199 Hg< 3.1 x 10 -29 PRL102(2009)101601 paramagnetic 205 Tl< 9 x 10 -25 PRL88(2002)071805 The neutron remains the classic example and is being pushed forward today by at least 4 international collaborations with somewhat different approaches. A future combination with results from proton and deuteron would allow to disentangle a possible QCD contribution to the nucleon EDMs.

26 Klaus.Kirch@psi.ch26Krakow, June 2010 Molecular YbF beam (Imperial) World-leading result in preparation. 1×10 -29 e cm over 5 yrs. PbO* cell (Yale) Ending because of systematic errors. ThO beam (Harvard/Yale) “5 yrs from 1st result aiming at 10 -29 e cm” PbF beam (Oklahoma) Just starting - “10 years from measurement” HfO+ (Boulder) trap “Serious measurement far away”. Might reach 1×10 -29 e cm WC (Michigan) Atomic Thallium beam (Berkeley) Current world limit, but has gone as far as possible. Ultracold Cs in a lattice (Penn State). Probably 10 years from measurement. Solid state Spins in ferroelectric solids (Yale, Amherst, Indiana) Macroscopic sample. Low noise. Previous solid experiments had huge systematics, potential accuracy unknown. Leading alternative approaches to eEDM Courtesy: Ben Sauer

27 Klaus.Kirch@psi.ch27Krakow, June 2010 Ions Proton storage ring (Brookhaven) R&D ongoing Deuteron storage ring (FZ Jülich) R&D ongoing Other ion EDMs in storage rings possible, and similarly muons (JPARC, PSI) Atoms 199 Hg (Seattle) World-leading result: 3×10 -29 e cm, next improvement: factor ~ 5. 129 Xe (Princeton, Munich) R&D ongoing 213,225 Ra (Argonne, Groningen) R&D ongoing Rn (Triumf) Leading alt. approaches to nuclear EDMs Courtesy: Ben Sauer Neutrons Sussex-RAL-ILL World-leading result: 3×10 -26 e cm, apparatus was moved to PSI PNPI-ILL: towards 10 -26 e cm in 2012 nEDM collaboration at PSI: ~ 5 x 10 -27 e cm in 2012 n2EDM (collaboration see nedm.web.psi.ch): 5 x 10 -28 e cm in 2016 Sussex-RAL-ILL-Oxford-Kuore (at ILL): similar time scale as n2EDM US collaboration at SNS: 8 x 10 -28 e cm after 2020 Developments at JPARC, TRIUMF, and maybe other places

28 The Neutron EDM Collaboration nedm.web.psi.ch

29 Klaus.Kirch@psi.ch29Krakow, June 2010 Beam dump nEDM nn Source commissioning started fall 2009 Expect 1000 UCN/cm 3 in typical experiments (compare to currently 10 UCN/cm 3 at ILL) nEDM setting up since middle of 2009 PSI UCN Source

30 Klaus.Kirch@psi.ch30Krakow, June 2010

31 Klaus.Kirch@psi.ch31Krakow, June 2010 Present best limit: d n < 2.9 x 10 -26 ecm Sussex-RAL-ILL collaboration C. A. Baker et al., PRL 97 (2006) 131801 nEDM collaboration nedm.web.psi.ch 15 groups, 50 people Moved from ILL to PSI March 2009 Data taking at PSI 2010 – 2012.. (Phase II) Sensitivity goal: 5x10 -27 ecm (95% C.L.) Operation of new n2EDM apparatus 2012 – 2016.. (Phase III) Sensitivity goal: 5x10 -28 ecm (95% C.L.)

32 Klaus.Kirch@psi.ch32Krakow, June 2010 Please mark your calendars for the 2nd International Workshop on the P hysics of fundamental S ymmetries and I nteractions – PSI2010 October 11-14, 2010 at the Paul Scherrer Institut, CH The focus is on physics at the low energy, high precision frontier and related topics. psi2010.web.psi.ch

33 Klaus.Kirch@psi.ch33Krakow, June 2010 Conclusions Thank you !

34 Klaus.Kirch@psi.ch34Krakow, June 2010

35 Klaus.Kirch@psi.ch35Krakow, June 2010 How to measure the neutron (or other) electric dipole moment ? B E h  = 2 (μB+d n E) h = 2 (μB- d n E) h  = 4 d n E

36 Klaus.Kirch@psi.ch36Krakow, June 2010 Thallium edm Thallium-EDM experiment

37 Klaus.Kirch@psi.ch37Krakow, June 2010 199 Hg EDM Optically pumped 199 Hg atoms precess in B & E fields, modulating absorption signal. Multiple cells remove effects of B drift. Result: d( 199 Hg) < 3 x 10 -29 e cm PRL 102 (2009) 101601 Provides good limit on CPv effects in nuclear forces, inc.  QCD “Confirms” d n <6x10 -26 ecm.

38 Klaus.Kirch@psi.ch38Krakow, June 2010 Present nEDM limit C. A. Baker et al., PRL 97 (2006) 131801 P. G. Harris et al., PRL 82 (1999) 904 Sussex-RAL-ILL experiment d n < 2.9 x 10 -26 e cm (90%CL)

39 Klaus.Kirch@psi.ch39Krakow, June 2010 Special feature: co-magnetometer · · · · · · · · · · · · · · · · · · · · · · · · · BoBo E UCN 199 Hg K.Green et al., NIM A 404 (1998) 381 P. G. Harris et al., PRL 82 (1999) 904 199 Hg co-magnetometer 50 pT

40 Klaus.Kirch@psi.ch40Krakow, June 2010 Next generation of experiments will … … perhaps establish a finite value !! Courtesy: A. Knecht … in any case, severely constrain non-SM physics

41 Klaus.Kirch@psi.ch41Krakow, June 2010 Summary of leading nEDM expts Group# peopleAnticipated sensitivity (ecm) By... UK: CryoEDM~25~3E-272012 CryoEDM (new beamline) ~30? * ~3E-282016? SNS-EDM~90<1E-28?>2020 nEDM@PSI~50~5E-27 ~5E-28 2012 2016? PNPI/ILL~10-20?~1E-262012? Courtesy: Phil Harris – slightly modified

42 Klaus.Kirch@psi.ch42Krakow, June 2010 Paul Scherrer Institut Swiss Light Source (SLS) 3. generation synchrotron Proton accelerator: 600 MeV, 2.2 mA, 1.3 MW (upgrade program  3 mA) muons, pions and neutrons for fundamental and applied research New UCN source Proton therapy New project: SwissFEL Research on: Energy Nuclear safety Structural biology, chemistry

43 Klaus.Kirch@psi.ch43Krakow, June 2010 3.6 m 3 D 2 O  UCN ~6000 cm -3 2 m 3 volume storage trap  ~ 2000 cm -3  exp > 1000 cm -3 The PSI UCN source UCN guide 30 liters solid D 2 vacuum high power (1.3 MW) low duty cycle (1%) multi-user capability compare with typical 10 cm -3 at ILL p-beam 1.3 MW

44 Klaus.Kirch@psi.ch44Krakow, June 2010  n [cm -2 s -1 ] V c [dm 3 ] V UCN [dm 3 ] T c [K] P c [W] R UCN [cm -3 s -1 ]  UCN [s]   UCN [cm -3 ] PSI spallation 1% of 1.3MW 2.6 x 10 13 pulsed (1%) 30 D 2 20005~10W avg. 3 x 10 5 10 400 1‘000 in exp. ILL beam 1 x 10 10 cw 1- 100 0.8~mW301001‘000 in exp. FRM-II reactor 4.5 x 10 13 cw 0.1 D 2 80 - 800 5~10W5 x 10 5 303‘000 dep vol PNPI reactor 2 x 10 12 cw 35100 - 400 1.2~20W4 x 10 3 3010‘000 TRIUMF spallation 25% of 20kW 2 x 10 12 cw (25%) 101000.8~8W4 x 10 3 15050‘000 2010 ≥2010 ≥2012 >2013 My biased & personal summary table

45 Klaus.Kirch@psi.ch45Krakow, June 2010 Storage ring EDMs


Download ppt "June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole."

Similar presentations


Ads by Google