Download presentation
Presentation is loading. Please wait.
Published byDwain Conley Modified over 9 years ago
1
Red Black Tree Essentials Notes from “Introduction to Algorithms”, Cormen et al.
2
Definition Red Black Trees A red-black tree is a binary search tree with an extra bit of storage per node. The extra bit represents the color of the node. It's either red or black. Each node contains the fields: color, key, left, right, and p. Any nil pointers are regarded as pointers to external nodes (leaves) and key bearing nodes are considered as internal nodes of the tree. See the video at: http://www.youtube.com/watch?v=vDHFF4wjWYU
3
Properties Red-black tree properties: 1. Every node is either red or black. 2. The root is black. 3. Every leaf (nil) is black. 4. If a node is red then both of its children are black. 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.
4
Implications From these properties, it can be shown (with a proof by induction) that the tree has a height no more than 2 * Lg(n + 1). Thus, worst case lookUp, insert, delete are all Θ(Log n).
5
Three essential methods Rotation Insertion Insert-fixUp
6
LeftRotate(T,x) pre: right[x] != nil[T] pre: root's parent is nill[T] Left-Rotate(T,x) y = right[x] right[x] = left[y] p[left[y]] = x p[y] = p[x] if p[x] == nil[T] then root[T] = y else if x == left[p[x]] then left[p[x]] = y else right[p[x]] = y left[y] = x p[x] = y
7
Red Black Insert RB-Insert(T,z) y = nil[T] x = root[T] while x != nil[T] y = x if key[z] < key[x] then x = left[x] else x = right[x] p[z] = y if y = nil[T] root[T] = z else if key[z] < key[y] then left[y] = z else right[y] = z left[z] = nil[T] right[z] = nil[T] color[z] = RED RB-Insert-fixup(T,z)
8
RB-Insert-fixup(T,z) { while(z's parent is Red) { set y to be z's uncle if uncle y is Red { color parent and uncle black color grandparent red set z to grandparent } else { // the uncle is black if (zig zag) { // make it a zig zig set z to parent rotate to zig zig } // rotate the zig zig and finish color parent of z black color grandparent of z red rotate grand parent of z } } // end while color root black }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.