Presentation is loading. Please wait.

Presentation is loading. Please wait.

Last lecture summary Standard normal distribution, Z-distribution

Similar presentations


Presentation on theme: "Last lecture summary Standard normal distribution, Z-distribution"— Presentation transcript:

1 Last lecture summary Standard normal distribution, Z-distribution
Z-table lognormal distribution, geometric mean

2 Z-table What is the proportion less than the point with the Z-score -2,75? Nice applet:

3 How normal is normal? Checking normality Eyball histograms
Eyball QQ plots There are tests

4 QQ plot Q stands for ‘quantile’. Quantiles are values taken at regular intervals from the data. The 2-quantile is called the median, the 3-quantiles are called terciles, the 4-quantiles are called quartiles (deciles, percentiles).

5 How to interpret QQ plot

6 How to interpret QQ plot
no outlier no outlier

7 http://www. nate-miller

8 Typical normal QQ plot

9 QQ plot of left-skewed distribution

10 QQ plot of right-skewed distribution

11 sampling distributions
výběrová rozdělení

12

13 Histogram

14 𝒙 =𝟏𝟗.𝟒𝟒 𝒔=𝟐.𝟒𝟓 𝒏=𝟗 𝒙 =𝟏𝟔.𝟖𝟗 𝒔=𝟗.𝟏𝟕 𝒏=𝟗 𝒙 =𝟏𝟕.𝟐𝟐 𝒔=𝟔.𝟐𝟒 𝒏=𝟗

15 Sampling distribution of sample mean
výběrové rozdělení výběrového průměru

16 Sweet demonstration of the sampling distribution of the mean

17 Data 2013 Population: 6,4,5,3,10,3,5,3,6,5,4,8,7,2,8,5,8,5,4,0 20 samples (n=3) and their averages … 6.0 3 3 4 … 3.3 4 4 8 … 5.3 4 3 8 … 5.0 5 5 6 … 5.3 6 8 7 … 7.0 3 8 8 … 6.3 6 8 4 … 6.0 8 8 4 … 6.7 5 3 4… 4.0 2 10 8… 6.7 3 4 5 … 4.0 5 6 5 … 5.3 8 6 4 … 6.0 4 8 4 … 5.3 5 8 5 … 6.0 4 4 3 … 3.7 8 8 4… 6.7 8 4 5… 5.7 3 0 7… 3.3

18 Data 2014 Population: 3,2,3,1,2,6,5,5,4,3,5,5,6,3,2,4,4,3,1,5 20 samples (n=3) and their averages 5 1 4 … 3.3 3 1 1 … 1.7 6 6 5 … 5.7 3 5 4 … 4.0 4 1 4 … 3.0 5 1 3 … 3.0 2 5 4 … 3.7 5 5 1 … 3.7 3 3 5 … 3.7 5 2 3 … 3.3 5 3 4 … 4.0 3 4 6 … 4.3 2 5 5 … 4.0 5 6 1 … 4.0 2 2 5 … 3.0 5 3 6 … 4.7 1 5 3 … 3.0 5 5 5 … 5.0 3 3 6 … 4.0

19 Sampling distribution, n = 3
Plot exact sampling distribution sample_size <- 3 data.set2014 <- c(3,2,3,1,2,6,5,5,4,3,5,5,6,3,2,4,4,3,1,5) samps <- combn(data.set2014, sample_size) xbars <- colMeans(samps) barplot(table(xbars))

20 Sampling distribution, n = 3
Calculate 𝜇. Calculate 𝜎. Le’s create all possible samples of size 3. Calculate 𝑀. Calculate 𝑆𝐸. 𝑆𝐸= 𝜎 𝑛

21 Sampling distribution, n = 3

22 Sampling distribution, n = 5

23 Central limit theorem 𝑀 =𝜇 𝑥 =𝜇 𝑆𝐸= 𝜎 𝑥 = 𝜎 𝑛
Distribution of sample means is normal. The distribution of means will increasingly approximate a normal distribution as the sample size 𝑛 increases. Its mean 𝑀 is equal to the population mean. Its standard deviation 𝑆𝐸 is equal to the population standard deviation divided by the square root of 𝑛. 𝑆𝐸 is called standard error. 𝑀 =𝜇 𝑥 =𝜇 𝑆𝐸= 𝜎 𝑥 = 𝜎 𝑛

24 Quiz As the sample size increases, the standard error
decreases As the sample size increases, the shape of the sampling distribution gets skinnier wider

25 Another data 1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,11,11

26 Sampling distribution

27 Sampling distribution

28 Sampling distribution

29 Sampling distribution

30 Sampling distribution applet
parent distribution sample data sampling distributions of selected statistics


Download ppt "Last lecture summary Standard normal distribution, Z-distribution"

Similar presentations


Ads by Google