Download presentation
Published byPreston Gilmore Modified over 9 years ago
1
Last lecture summary Standard normal distribution, Z-distribution
Z-table lognormal distribution, geometric mean
2
Z-table What is the proportion less than the point with the Z-score -2,75? Nice applet:
3
How normal is normal? Checking normality Eyball histograms
Eyball QQ plots There are tests
4
QQ plot Q stands for ‘quantile’. Quantiles are values taken at regular intervals from the data. The 2-quantile is called the median, the 3-quantiles are called terciles, the 4-quantiles are called quartiles (deciles, percentiles).
5
How to interpret QQ plot
6
How to interpret QQ plot
no outlier no outlier
7
http://www. nate-miller
8
Typical normal QQ plot
9
QQ plot of left-skewed distribution
10
QQ plot of right-skewed distribution
11
sampling distributions
výběrová rozdělení
13
Histogram
14
𝒙 =𝟏𝟗.𝟒𝟒 𝒔=𝟐.𝟒𝟓 𝒏=𝟗 𝒙 =𝟏𝟔.𝟖𝟗 𝒔=𝟗.𝟏𝟕 𝒏=𝟗 𝒙 =𝟏𝟕.𝟐𝟐 𝒔=𝟔.𝟐𝟒 𝒏=𝟗
15
Sampling distribution of sample mean
výběrové rozdělení výběrového průměru
16
Sweet demonstration of the sampling distribution of the mean
17
Data 2013 Population: 6,4,5,3,10,3,5,3,6,5,4,8,7,2,8,5,8,5,4,0 20 samples (n=3) and their averages … 6.0 3 3 4 … 3.3 4 4 8 … 5.3 4 3 8 … 5.0 5 5 6 … 5.3 6 8 7 … 7.0 3 8 8 … 6.3 6 8 4 … 6.0 8 8 4 … 6.7 5 3 4… 4.0 2 10 8… 6.7 3 4 5 … 4.0 5 6 5 … 5.3 8 6 4 … 6.0 4 8 4 … 5.3 5 8 5 … 6.0 4 4 3 … 3.7 8 8 4… 6.7 8 4 5… 5.7 3 0 7… 3.3
18
Data 2014 Population: 3,2,3,1,2,6,5,5,4,3,5,5,6,3,2,4,4,3,1,5 20 samples (n=3) and their averages 5 1 4 … 3.3 3 1 1 … 1.7 6 6 5 … 5.7 3 5 4 … 4.0 4 1 4 … 3.0 5 1 3 … 3.0 2 5 4 … 3.7 5 5 1 … 3.7 3 3 5 … 3.7 5 2 3 … 3.3 5 3 4 … 4.0 3 4 6 … 4.3 2 5 5 … 4.0 5 6 1 … 4.0 2 2 5 … 3.0 5 3 6 … 4.7 1 5 3 … 3.0 5 5 5 … 5.0 3 3 6 … 4.0
19
Sampling distribution, n = 3
Plot exact sampling distribution sample_size <- 3 data.set2014 <- c(3,2,3,1,2,6,5,5,4,3,5,5,6,3,2,4,4,3,1,5) samps <- combn(data.set2014, sample_size) xbars <- colMeans(samps) barplot(table(xbars))
20
Sampling distribution, n = 3
Calculate 𝜇. Calculate 𝜎. Le’s create all possible samples of size 3. Calculate 𝑀. Calculate 𝑆𝐸. 𝑆𝐸= 𝜎 𝑛
21
Sampling distribution, n = 3
22
Sampling distribution, n = 5
23
Central limit theorem 𝑀 =𝜇 𝑥 =𝜇 𝑆𝐸= 𝜎 𝑥 = 𝜎 𝑛
Distribution of sample means is normal. The distribution of means will increasingly approximate a normal distribution as the sample size 𝑛 increases. Its mean 𝑀 is equal to the population mean. Its standard deviation 𝑆𝐸 is equal to the population standard deviation divided by the square root of 𝑛. 𝑆𝐸 is called standard error. 𝑀 =𝜇 𝑥 =𝜇 𝑆𝐸= 𝜎 𝑥 = 𝜎 𝑛
24
Quiz As the sample size increases, the standard error
decreases As the sample size increases, the shape of the sampling distribution gets skinnier wider
25
Another data 1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,6,7,7,8,8,8,9,9,9,9,10,10,10,10,10,11,11,11,11,11,11
26
Sampling distribution
27
Sampling distribution
28
Sampling distribution
29
Sampling distribution
30
Sampling distribution applet
parent distribution sample data sampling distributions of selected statistics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.