Download presentation
Presentation is loading. Please wait.
Published byErin Walsh Modified over 9 years ago
1
Low Pass Filter High Pass Filter Band pass Filter Blurring Sharpening Image Processing Image Filtering in the Frequency Domain
2
Frequency Bands Percentage of image power enclosed in circles (small to large) : 90, 95, 98, 99, 99.5, 99.9 ImageFourier Spectrum
3
Blurring - Ideal Low pass Filter 90%95% 98% 99% 99.5% 99.9%
6
The Power Law of Natural Images The power in a disk of radii r=sqrt(u 2 +v 2 ) follows: P(r)=Ar - where 2 Images from: Millane, Alzaidi & Hsiao - 2003
7
Image Filtering Low pass High pass Band pass Local pass Usages
8
Recall: The Convolution Theorem
9
Low pass Filter f(x,y) F(u,v) g(x,y) G(u,v) G(u,v) = F(u,v) H(u,v) spatial domainfrequency domain filter f(x,y)F(u,v) H(u,v)g(x,y)
10
H(u,v) - Ideal Low Pass Filter u v H(u,v) 0 D0D0 1 D(u,v) H(u,v) H(u,v) = 1 D(u,v) D 0 0 D(u,v) > D 0 D(u,v) = u 2 + v 2 D 0 = cut off frequency
11
Blurring - Ideal Low pass Filter 98.65% 99.37% 99.7%
12
Blurring - Ideal Low pass Filter 98.0% 99.4% 99.6% 99.7% 99.0% 96.6%
13
The Ringing Problem G(u,v) = F(u,v) H(u,v) g(x,y) = f(x,y) * h(x,y) Convolution Theorem sinc(x) h(x,y)H(u,v) D0 D0 Ringing radius + blur IFFT
14
The Ringing Problem Freq. domain Spatial domain
15
H(u,v) - Gaussian Filter D(u,v) 0D0D0 1 H(u,v) u v D(u,v) = u 2 + v 2 H(u,v) = e -D 2 (u,v)/(2D 2 0 ) Softer Blurring + no Ringing
16
Blurring - Gaussain Lowpass Filter 96.44% 98.74% 99.11%
17
The Gaussian Lowpass Filter Freq. domain Spatial domain
18
Blurring in the Spatial Domain: Averaging = convolution with 1 = point multiplication of the transform with sinc: 050100 0 0.05 0.1 0.15 -50050 0 0.2 0.4 0.6 0.8 1 Gaussian Averaging = convolution with 1 2 1 2 4 2 1 2 1 = point multiplication of the transform with a gaussian. Image DomainFrequency Domain
19
Image Sharpening - High Pass Filter H(u,v) - Ideal Filter H(u,v) = 0 D(u,v) D 0 1 D(u,v) > D 0 D(u,v) = u 2 + v 2 D 0 = cut off frequency 0 D0D0 1 D(u,v) H(u,v) u v
20
D(u,v) 0D0D0 1 D(u,v) = u 2 + v 2 High Pass Gaussian Filter u v H(u,v) H(u,v) = 1 - e -D 2 (u,v)/(2D 2 0 )
21
High Pass Filtering OriginalHigh Pass Filtered
22
High Frequency Emphasis OriginalHigh Pass Filtered +
23
High Frequency Emphasis Emphasize High Frequency. Maintain Low frequencies and Mean. (Typically K 0 =1) H'(u,v) = K 0 + H(u,v) 0 D0D0 1 D(u,v) H'(u,v)
24
High Frequency Emphasis - Example OriginalHigh Frequency Emphasis OriginalHigh Frequency Emphasis
25
High Pass Filtering - Examples OriginalHigh pass Emphasis High Frequency Emphasis + Histogram Equalization
26
Band Pass Filtering H(u,v) = 1 D 0 - D(u,v) D 0 + 0 D(u,v) > D 0 + D(u,v) = u 2 + v 2 D 0 = cut off frequency u v H(u,v) 0 1 D(u,v) H(u,v) D0-D0- w 2 D0+D0+ w 2 D0D0 0 D(u,v) D 0 - w 2 w 2 w 2 w 2 w = band width
27
H(u,v) = 1 D 1 (u,v) D 0 or D 2 (u,v) D 0 0 otherwise D 1 (u,v) = (u-u 0 ) 2 + (v-v 0 ) 2 D 0 = local frequency radius Local Frequency Filtering u v H(u,v) 0 D0D0 1 D(u,v) H(u,v) -u 0,-v 0 u 0,v 0 D 2 (u,v) = (u+u 0 ) 2 + (v+v 0 ) 2 u 0,v 0 = local frequency coordinates
28
H(u,v) = 0 D 1 (u,v) D 0 or D 2 (u,v) D 0 1 otherwise D 1 (u,v) = (u-u 0 ) 2 + (v-v 0 ) 2 D 0 = local frequency radius Band Rejection Filtering 0 D0D0 1 D(u,v) H(u,v) -u 0,-v 0 u 0,v 0 D 2 (u,v) = (u+u 0 ) 2 + (v+v 0 ) 2 u 0,v 0 = local frequency coordinates u v H(u,v)
29
Demo
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.