Download presentation
Presentation is loading. Please wait.
Published byAllison Holt Modified over 9 years ago
2
Natural Deduction for Predicate Logic Bound Variable: A variable within the scope of a quantifier. – (x) Px – ( y) (Zy · Uy) – (z) (Mz ~Nz) Free Variable: A variable not within the scope of a quantifier. – Px – Py · ~Qy – ~Az Bz
3
Universal Instantiation (UI) – Used to remove a universal quantifier. – Consistently replace the bound variables with ANY free variable or ANY constant. – For example: (x) Px – Px (y) (~Cy Sy) – ~Cz Sz
4
(z) (Dz ~Tz) – Da ~Ta – These uses of UI are invalid because of inconsistent replacements. (x) (~Cx Sx) – ~Cx Sy (z) (Dz ~Tz) – Da ~Tb
5
Existential Generalization (EG) – Used to add an existential quantifier. – Consistently replace the constants or free variables with ANY bound variable and add ( x). – For example: Pa – ( x) Px ~Cm Sm – ( y) (~Cy Sy)
6
Dx · ~Tx – ( x) (Dx · ~Tx) – These uses of EG are invalid because of inconsistent replacements. ~Ca Sb – ( x) (~Cx Sy) Dy ~Tz – ( x) (Dx ~Tx)
7
Universal Generalization (UG) – Used to add a universal quantifier. – Consistently replace the free variables with ANY bound variable and add (x). – For example: Px – (x) Px ~Cy Sy – (y) (~Cy Sy) Dx · ~Tx – (z) (Dz · ~Tz)
8
– One may not use UG on statements containing constants. (All of these uses of UG are invalid.) La – (x) Lx Gb v ~Hb – (y) (Gy v ~Hy) ~Ne Me – (z) (~Nz Mz)
9
– These uses of UG are invalid because of inconsistent replacements. ~Cx Sy – (x) (~Cx Sy) Dy ~Tz – (x) (Dx ~Tx)
10
Existential Instantiation (EI) – Used to remove an existential quantifier. – Consistently replace the bound variables with ANY new constant, i.e. any constant that has not been previously used anywhere in the proof. – For example: 6.) Pa 7.) ( x) Qx 8.) Qb7 EI(valid) 8.) Qa7 EI(invalid)
11
1.) Sm v ~Gm.../ ~Tk · Wk 8.) ( y) (Ny · ~My) 9.) Na · ~Ma8 EI(valid) 9.) Nm · ~Mm8 EI(invalid) 9.) Nk · ~Mk8 EI(invalid)
12
– These uses of EI are invalid because of inconsistent replacements. ( x) (~Cx Sy) – ~Ca Sb ( x) (Dx ~Tx) – Dn ~Tm When one must both EI and UI to the same constant in a proof, do the EI first.
13
N. B.: The rules in Section 8.2 may NOT be used on parts of lines. – All of these moves are INVALID. (x) Zx (x) ~Qx – Zx ~ Qx ( z) Lz v ( z) Pz – Ln v Pn Tm (y) (~Sy Qy) – Tm (~Sy Qy)
14
N. B.: The rules from 7.1 and 7.2 may NOT be used on statements in which the WHOLE statement is quantified – These moves are INVALID. (x) (Ax Bx) ( x) Ax (x) Bx ( x) (Cx v Dx) (x) ~Cx ( x) Dx
15
N. B.: The rules from 7.1 and 7.2 MAY be used on statements in which the parts, not the whole, are quantified. – These moves are VALID. (x) Ax ( x) Bx (x) Ax ( x) Bx ( x) Dx v (x) Cx ~( x) Dx (x) Cx
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.