Download presentation
Presentation is loading. Please wait.
Published byJemima Bryan Modified over 9 years ago
1
8.2 Angles in Polygons Textbook pg 417
2
Interior and Exterior Angles interior angles exterior angle
3
Polygon Exterior Angles Theorem The sum of the exterior angles of a convex polygon is always 360 0
4
Polygon# of sides# of Triangles Sum of Interior Angles Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon Dodecagon n-gon
5
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon Dodecagon n-gon
6
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon Hexagon Heptagon Octagon Nonagon Decagon Dodecagon n-gon
7
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon Heptagon Octagon Nonagon Decagon Dodecagon n-gon
8
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon Octagon Nonagon Decagon Dodecagon n-gon
9
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon Nonagon Decagon Dodecagon n-gon
10
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon861080 0 Nonagon Decagon Dodecagon n-gon
11
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon861080 0 Nonagon971260 0 Decagon Dodecagon n-gon
12
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon861080 0 Nonagon971260 0 Decagon1081440 0 Dodecagon n-gon
13
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon861080 0 Nonagon971260 0 Decagon1081440 0 Dodecagon12101800 0 n-gon
14
Polygon# of sides# of Triangles Sum of Interior Angles Triangle31180 0 Quadrilateral42360 0 Pentagon53540 0 Hexagon64720 0 Heptagon75900 0 Octagon861080 0 Nonagon971260 0 Decagon1081440 0 Dodecagon12101800 0 n-gonnn – 2(n – 2) 180 0
15
Polygon Interior Angles Theorem For any convex polygon with n sides, the sum of the interior angles can be found with the following formula: (n – 2) 180 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.