Download presentation
Presentation is loading. Please wait.
Published byJared Warren Modified over 9 years ago
1
Chapter 3-2 Discrete Random Variables 主講人 : 虞台文
2
Content Functions of a Single Discrete Random Variable Discrete Random Vectors Independent of Random Variables Multinomial Distributions Sums of Independent Variables Generating Functions Functions of Multiple Random Variables
3
Functions of a Single Discrete Random Variable Chapter 3-2 Discrete Random Variables
4
計程車司機的心聲 這傢伙上車後會 要跑幾公里 (X) ? X 為一隨機變數
5
計程車司機的心聲 這傢伙上車後會 要跑幾公里 (X) ? X 為一隨機變數 這傢伙上車後我可以 從他口袋掏多少錢 (Y) ? Y 亦為一隨機變數 Y = g(X) 隨機變數之函式 亦為隨機變數。
6
計程車司機的心聲 這傢伙上車後會 要跑幾公里 (X) ? X 為一隨機變數 這傢伙上車後我可以 從他口袋掏多少錢 (Y) ? Y 亦為一隨機變數 Y = g(X) 若 p X (x) 已知, p Y (y) =?
7
The Problem Y = g(X) and p X (x) is available.
8
Example 17 這瓶十元 這瓶只要五元 福氣啦 !!!
9
Example 17 這瓶十元 這瓶只要五元 福氣啦 !!!
10
Example 17 這瓶十元 這瓶只要五元 福氣啦 !!!
11
Example 17
12
Example 18 n=10, p=0.2.
13
Example 18 n=10, p=0.2.
14
Example 18 n=10, p=0.2.
15
Example 18 n=10, p=0.2. Pay 100$, #bottles ( X 3 ) obtained?
16
Example 18 n=10, p=0.2. Pay 100$, #bottles ( X 3 ) obtained? Let Y ( X 3 ) denote #lucky bottles obtained.
17
Discrete Random Vectors Chapter 3-2 Discrete Random Variables
18
Definition Random Vectors A discrete r -dimensional random vector X is a function X: R r with a finite or countable infinite image of {x 1, x 2, …}.
19
Example 19
20
11
21
22
22
Definition Joint Pmf Let random vector X = (X 1, X 2, …, X r ). The joint pmf (jpmf) for X is defined as p X (x) = P(X 1 = x 1, X 2 = x 2, …, X r = x r ), where x = (x 1, x 2, …, x r ).
23
Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y
24
Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y
25
Properties of Jpmf's 1. p(x) 0, x R r ; 2. {x | p(x) 0} is a finite or countably infinite subset of R r ; 3.
26
Definition Marginal Probability Mass Functions Let X = (X 1, …, X i, …, X r ) be an r -dimensional random vectors. The i th marginal probability mass function defined by
27
Example 21 Find p X (x) and p Y (y) of Example 20. X Y
28
Example 21 Find p X (x) and p Y (y) of Example 20. X Y
29
Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
30
p X,Y (x, y) Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
31
p X,Y (x, y) Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
32
p X,Y (x, y) Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
33
p X,Y (x, y) Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
34
p X,Y (x, y) Example 22 4 X = # Y = # 1. p X,Y (x, y) = ? 2. p X (x) = ? p Y (y) = ? 3. p(X < 3)= ? 4. p(X + Y < 4)= ?
35
Independent Random Variables Chapter 3-2 Discrete Random Variables
36
Definition Let X 1, X 2, …, X r be r discrete random variables having densities, respectively. These random variables are said to be mutually independent if their jpdf p(x 1, x 2, …, x r ) satisfies
37
Example 23 Tossing two dice, let X, Y represent the face values of the 1st and 2nd dice, respectively. 1. p X,Y (x, y) = ?. 2. Are X, Y independent? Tossing two dice, let X, Y represent the face values of the 1st and 2nd dice, respectively. 1. p X,Y (x, y) = ?. 2. Are X, Y independent?
38
Example 23
39
Fact ? ? ?
41
42
Example 24 Consider Example 23. Find P(X 2, Y 4).
43
Example 24
45
Z 1 有何意義 ?
46
Example 24
49
p’p’ p’p’
51
Fact: cdf pmf
52
Example 24
55
Multinomial Distributions Chapter 3-2 Discrete Random Variables
56
Generalized Bernoulli Trials A sequence of n independent trials. Each trial has r distinct outcomes with probabilities p 1, p 2, …, p r such that
57
Multinomial Distributions Define X=(X 1, X 2, …, X r ) st X i is the number of trials that resulted in the i th outcome. satisfies
58
Multinomial Distributions Define X=(X 1, X 2, …, X r ) st X i is the number of trials that resulted in the i th outcome. satisfies
59
Example 26 If a pair of dice are tossed 6 times, what is the probability of obtaining a total of 7 or 11 twice, a matching pair one, and any other combination 3 times? Three outcomes: 1.7 or 11 2.match 3.others X 1 #7 or 11; X 2 #matches; X 3 #others.
60
Sums of Independent Variables Generating Functions Chapter 3-2 Discrete Random Variables
61
The Sum of Independent Random Variables
62
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z).
63
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). 0 n z nz n z 0 n z nz n z Case 1: z {0, 1, …, n} Case 2: z {n+1, n+2, …, 2n}
64
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z {0, 1, …, n} Case 2: z {n+1, n+2, …, 2n}
65
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z {0, 1, …, n} Case 2: z {n+1, n+2, …, 2n}
66
Probability Generating Functions Probabilities Probabilities 機率母函數
67
Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function G X (t) is defined as: pgf
68
Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function G X (t) is defined as: pgf 0 0 1 1 2 2 x x
69
Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function G X (t) is defined as: pgf 0 0 1 1 2 2 x x
70
Probability Generating Functions pgf Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p).
71
Probability Generating Functions pgf Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p).
72
Probability Generating Functions pgf Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p).
73
Probability Generating Functions pgf Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p).
74
Probability Generating Functions pgf Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P( ); 3. Z ~ G(p); 4. U ~ NB(r, p). Exercise
75
Important Generating Functions
76
Theorem 2 Sums of Independent Random Variables Let X, Y be two independent, nonnegative integer-valued random variables. Then,
77
Theorem 2 Sums of Independent Random Variables and Let Z=X+Y. Pf)
78
Theorem 2 Sums of Independent Random Variables and Fact: and...
79
Example 29 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Use pgf to recompute Example 27.
80
Example 29 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Use pgf to recompute Example 27.
81
Theorem 3
92
熟記 !!! 請靈活的將它們用於解題
93
Functions of Multiple Random Variables Chapter 3-2 Discrete Random Variables
94
Functions of Multiple Random Variables Let X, Y be two random variables with jpmf p X,Y (x, y). Suppose that 1-1 p U,V (u, v)=?
95
Functions of Multiple Random Variables Let X, Y be two random variables with jpmf p X,Y (x, y). Suppose that 1-1 p U,V (u, v)=? Example: X $/month Y $/month p X,Y (x, y) 已知 p U,V (u, v) = ?
96
Functions of Multiple Random Variables Let X, Y be two random variables with jpmf p X,Y (x, y). Suppose that 1-1 p U,V (u, v)=? Example: p X,Y (x, y) 已知 p U,V (u, v) = ? 1-1 implies invertible.
97
Functions of Multiple Random Variables Let X, Y be two random variables with jpmf p X,Y (x, y). Suppose that 1-1 p U,V (u, v)=? 1-1 implies invertible.
98
Example 30 Let X~B(n, p 1 ), Y~B(m, p 2 ) be two independent random variables. U = X + Y V = X Y Let X~B(n, p 1 ), Y~B(m, p 2 ) be two independent random variables. U = X + Y V = X Y LetFind p U,V (u, v).
99
Example 30 Let X~B(n, p 1 ), Y~B(m, p 2 ) be two independent random variables. U = X + Y V = X Y Let X~B(n, p 1 ), Y~B(m, p 2 ) be two independent random variables. U = X + Y V = X Y LetFind p U,V (u, v). and
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.