Download presentation
Presentation is loading. Please wait.
Published byAngelina Reeves Modified over 9 years ago
1
Class average for Exam I 70
2
Fe(OH) 3 Fe 3+ (aq) + 3 OH - (aq) [Fe 3+ ][OH - ] 3 = 1.1 x 10 -36 [y][3y] 3 = 1.1 x 10 -36 If there is another source of OH - (NaOH) that provides a higher [OH - ] then that is the value of [OH - ] to be used.
3
pH and solubility
4
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l)
5
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l) Net ionic equation.
6
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l) CaCO 3 calcium carbonate, present in both limestone and marble.
7
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l) CaCO 3 (s) + H 2 O(l) Ca 2+ (aq) + CO 3 2- (aq)
8
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l) CaCO 3 (s) + H 2 O(l) Ca 2+ (aq) + CO 3 2- (aq) CO 3 2- (aq) + H 3 O + (aq) H 2 O(l) + HCO 3 - (aq) K sp = [Ca 2+ ][CO 3 2- ]
9
CaCO 3(s) + H 3 O + (aq) Ca 2+ (aq) + HCO 3 - (aq) + H 2 O (l) CaCO 3 (s) + H 2 O(l) Ca 2+ (aq) + CO 3 2- (aq) CO 3 2- (aq) + H 3 O + (aq) H 2 O(l) + HCO 3 - (aq) Any reaction favoring the formation of HCO 3 - favors the solution of a solid carbonate. K sp = [Ca 2+ ][CO 3 2- ]
10
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq)
11
[Zn 2+ ][OH - ] 2 = K sp
12
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17
13
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 Increase solubility of Zn(OH) 2 by lowering pH.
14
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 Increase solubility of Zn(OH) 2 by lowering pH. Removal of product, OH -, shifts equilibrium to right.
15
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 7
16
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 7 [Zn 2+ ] = y
17
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 7 [Zn 2+ ] = y (y)(2y) 2 = K sp
18
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 7 [Zn 2+ ] = y (y)(2y) 2 = K sp = 4y 3 = 4.5 x 10 -17
19
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 7 [Zn 2+ ] = y (y)(2y) 2 = K sp = 4y 3 = 4.5 x 10 -17 [Zn 2+ ] = 2.2 x 10 -6 M[OH - ] = 4.4 x 10 -6 M
20
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 6 [Zn 2+ ] = y buffered pH = 6, [H 3 O + ] = 10 -6 [OH - ] = KwKw [H 3 O + ]
21
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = ? @ pH = 6 [Zn 2+ ] = y buffered pH = 6, [H 3 O + ] = 10 -6 [OH - ] = KwKw [H 3 O + ] = 1 x 10 -14 10 -6 = 10 -8
22
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [OH - ] = 1 x 10 -8 (y)(1 x 10 -8 ) 2 = 4.5 x 10 -17
23
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [OH - ] = 1 x 10 -8 (y)(1 x 10 -8 ) 2 = 4.5 x 10 -17 y = 4.5 x 10 -17 1 x 10 -16
24
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [OH - ] = 1 x 10 -8 (y)(1 x 10 -8 ) 2 = 4.5 x 10 -17 y = 4.5 x 10 -17 1 x 10 -16 = 4.5 x 10 -1
25
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [OH - ] = 1 x 10 -8 (y)(1 x 10 -8 ) 2 = 4.5 x 10 -17 y = 4.5 x 10 -17 1 x 10 -16 = 4.5 x 10 -1 [Zn 2+ ] = 0.45 M
26
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = 0.45 M pH = 6 pH = 7 [Zn 2+ ] = 0.0000022 M
27
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = 0.45 M pH = 6 pH = 7 [Zn 2+ ] = 0.0000022 M [OH - ] = 2[Zn 2+ ]
28
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = 0.45 M pH = 6 pH = 7 [Zn 2+ ] = 0.0000022 M [OH - ] = 2[Zn 2+ ] = 4.4 x 10 -6 M
29
Zn(OH) 2(s) Zn 2+ (aq) + 2 OH - (aq) [Zn 2+ ][OH - ] 2 = K sp = 4.5 x 10 -17 [Zn 2+ ] = 0.45 M pH = 6 pH = 8.6 [Zn 2+ ] = 0.0000022 M [OH - ] = 2[Zn 2+ ] = 4.4 x 10 -6 M
30
Solubility of salts of weak acids
31
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq)
32
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Reduce pH, increase [H 3 O + ]
33
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Reduce pH, increase [H 3 O + ] Increase [H 3 O + ] : equilibrium
34
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) conjugate base
35
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) A - (aq) + H 3 O + (aq) HA (aq) + H 2 O (l)
36
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) A - (aq) + H 3 O + (aq) HA (aq) + H 2 O (l) Reduce pH, increase [H 3 O + ]
37
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) A - (aq) + H 3 O + (aq) HA (aq) + H 2 O (l) Reduce pH, increase [H 3 O + ], reduce [A - ]
38
Solubility of salts of weak acids HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) A - (aq) + H 3 O + (aq) HA (aq) + H 2 O (l) Reduce pH, increase [H 3 O + ], reduce [A - ], increase [Na + ]
39
Using common ions to separate mixtures of ions.
40
Using common ions to separate mixtures of ions. Separating ions which share a group is difficult - they have very similar chemistries.
41
Using common ions to separate mixtures of ions. I II VII Na + Ca 2+ Cl - K + Ba 2+ I -
42
M1X M1 + + X - M2X M2 + + X -
43
M1X M1 + + X - M2X M2 + + X - If the solution is not saturated for either M1X or M2X, there will be no solid present.
44
M1X M1 + + X - M2X M2 + + X - As [X - ] is increased, at some point precipitation will occur.
45
M1X M1 + + X - M2X M2 + + X - If K sp for M1X and K sp for M2X differ by a large enough amount, one will precipitate and the other will remain in solution.
46
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
47
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6
48
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q < K sp no precipitate
49
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q = [Ba 2+ ][F - ] 2 < 1.7 x 10 -6
50
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q = [Ba 2+ ][F - ] 2 < 1.7 x 10 -6 Q < K sp no precipitate
51
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q = [Ba 2+ ][F - ] 2 < 1.7 x 10 -6 Q < K sp no precipitate Q = [Ca 2+ ][F - ] 2 > 3.9 x 10 -11
52
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q = [Ba 2+ ][F - ] 2 < 1.7 x 10 -6 Q < K sp no precipitate Q = [Ca 2+ ][F - ] 2 > 3.9 x 10 -11 Q > K sp precipitate
53
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6 Q = [Ba 2+ ][F - ] 2 < 1.7 x 10 -6 Q < K sp no precipitate Q = [Ca 2+ ][F - ] 2 > 3.9 x 10 -11 Q > K sp precipitate Adjust [F - ] so maximum Ca 2+ precipitates with no Ba 2+ precipitate.
54
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6
55
Q < K sp no precipitate CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
56
K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6 Q < K sp no precipitate [F - ] 2 < 1.7 x 10 -6 [Ba 2+ ] CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
57
K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6 Q < K sp no precipitate [F - ] 2 < 1.7 x 10 -6 [Ba 2+ ] = 1.7 x 10 -6 0.10 CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
58
K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6 Q < K sp no precipitate [F - ] 2 < 1.7 x 10 -6 [Ba 2+ ] = 1.7 x 10 -6 0.10 = 1.7 x 10 -5 CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
59
K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6 Q < K sp no precipitate [F - ] 2 < 1.7 x 10 -6 [Ba 2+ ] = 1.7 x 10 -6 0.10 = 1.7 x 10 -5 [F - ] < 4.1 x 10 -3 CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
60
K sp (BaF 2 ) = [Ba 2+ ][F - ] 2 = 1.7 x 10 -6 Q < K sp no precipitate [F - ] 2 < 1.7 x 10 -6 [Ba 2+ ] = 1.7 x 10 -6 0.10 = 1.7 x 10 -5 [F - ] < 4.1 x 10 -3 All Ba 2+ remains in solution. CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
61
K sp (CaF 2 ) = [Ca 2+ ][F - ] 2 = 3.9 x 10 -11 Q > K sp precipitate CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq) [Ba 2 +] = [Ca 2+ ] = 0.10 M
62
K sp (CaF 2 ) = [Ca 2+ ][F - ] 2 = 3.9 x 10 -11 Q > K sp precipitate [F - ] 2 > 3.9 x 10 -11 0.10 CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
63
K sp (CaF 2 ) = [Ca 2+ ][F - ] 2 = 3.9 x 10 -11 Q > K sp precipitate [F - ] 2 > 3.9 x 10 -11 0.10 = 3.9 x 10 -10 [F - ] > 2.0 x 10 -5 CaF 2(s) starts to precipitate CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
64
[F - ] > 2.0 x 10 -5 CaF 2(s) starts to precipitate [F - ] < 4.1 x 10 -3 All Ba 2+ remains in solution. CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
65
[F - ] > 2.0 x 10 -5 CaF 2(s) starts to precipitate [F - ] < 4.1 x 10 -3 All Ba 2+ remains in solution. How to reduce [Ca 2+ ] to as low a level as possible without BaF 2 precipitation? CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
66
[F - ] < 4.1 x 10 -3 All Ba 2+ remains in solution. Adjust [F - ] to 0.0041 M CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
67
[F - ] < 4.1 x 10 -3 All Ba 2+ remains in solution. Adjust [F - ] to 0.0041 M How much Ca 2+ remains in solution? CaF 2(s) Ca 2+ (aq) + 2 F - (aq) BaF 2(s) Ba 2+ (aq) + 2 F - (aq)
68
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) Adjust [F - ] to 0.0041 M K sp = [Ca 2+ ][F - ] 2 = 3.9 x 10 -11 [Ca 2+ ] = 3.9 x 10 -11 [F - ] 2
69
CaF 2(s) Ca 2+ (aq) + 2 F - (aq) Adjust [F - ] to 0.0041 M K sp = [Ca 2+ ][F - ] 2 = 3.9 x 10 -11 [F - ] 2 = 3.9 x 10 -11 (4.1 x 10 -3 ) 2 2.3 x 10 -6 [Ca 2+ ] =
70
Adjust [F - ] to 0.0041 M 0.10 M CaF 2(s) Ca 2+ (aq) + 2 F - (aq) 0.10 M BaF 2(s) Ba 2+ (aq) + 2 F - (aq) [Ba 2+ ] = 1.7 x 10 -6 (4.1 x 10 -3 ) 2 = 0.10 M 2.3 x 10 -6 [Ca 2+ ] = CaF 2 K sp = 3.9 x 10 -11 BaF 2 K sp = 1.7 x 10 -6
71
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) K sp = [M 2+ ][S 2- ]
72
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) K sp = [M 2+ ][S 2- ] S 2- Is a strong base
73
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) K sp = [M 2+ ][S 2- ] S 2- Is a strong base S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K b = [HS - ][OH - ] [S 2- ]
74
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) K sp = [M 2+ ][S 2- ] S 2- Is a strong base S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K b = [HS - ][OH - ] [S 2- ] 10 5
75
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) K sp = [M 2+ ][S 2- ] S 2- Is a strong base S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K b = [HS - ][OH - ] [S 2- ] 10 5 K sp = [M 2+ ][HS - ][OH - ]
76
Metal sulfides in acidic solution MS M 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [M 2+ ][HS - ][OH - ] Lower pH, lower [OH - ], higher [M 2+ ] K sp metal sulfides < 10 -10
77
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28
78
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2
79
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2 [H 3 O + ] = 1 x 10 -2
80
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2 [H 3 O + ] = 1 x 10 -2 [OH - ] = 1 x 10 -14 1 x 10 -2
81
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2 [OH - ] = 1 x 10 -14 1 x 10 -2 = 1 x 10 -12
82
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2 [OH - ] = 1 x 10 -12
83
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 Buffer solution to pH = 2 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq)
84
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) K a = [H 3 O + ][HS - ] [H 2 S] = 9.1 x 10 -8 Buffer solution to pH = 2 [H 2 S] = 0.10 M
85
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) K a = (0.01)[HS - ] (0.10) = 9.1 x 10 -8
86
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) K a = (0.01)[HS - ] (0.10) = 9.1 x 10 -8 [HS - ] = (0.10)(9.1 x 10 -8 )/(0.01) = 9.1 x 10 -7
87
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) [HS - ] = 9.1 x 10 -7 [Cd 2+ ] = (7 x 10 -28 )/(9.1 x 10 -7 )(1 x 10 -12 )
88
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -12 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) [HS - ] = 9.1 x 10 -7 [Cd 2+ ] = (7 x 10 -28 )/(9.1 x 10 -7 )(1 x 10 -12 ) = 8 x 10 -10
89
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -7 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) K a = (1 x 10 -7 )[HS - ] (0.10) = 9.1 x 10 -8 [HS - ] = (0.1)(9.1 x 10 -8 )/(1 x 10 -7 ) = 9.1 x 10 -2 pH = 7
90
Metal sulfides in acidic solution CdS (s) Cd 2+ (aq) + S 2- (aq) S -2 (aq) + H 2 O (l) HS - (aq) + OH - (aq) K sp = [Cd 2+ ][HS - ][OH - ] = 7 x 10 -28 [OH - ] = 1 x 10 -7 H 2 S (aq) + H 2 O (l) H 3 O + (aq) + HS - (aq) [HS - ] = 9.1 x 10 -2 [Cd 2+ ] = (7 x 10 -28 )/(9.1 x 10 -2 )(1 x 10 -7 ) = 8 x 10 -20
91
Complex ions
92
Metals coordinated to ligands which can exist independantly as molecules or ions.
93
Ammonia, NH 3, and water are common ligands in complex ions.
94
Cobalt(II) chloride
95
CoCl 2. 6H 2 O CoCl 2. 2H 2 O
96
Cobalt(II) chloride CoCl 2. 6H 2 O [Co(H 2 O) 6 ] 2+ (Cl - ) 2 CoCl 2. 2H 2 O blue purple magenta
97
2+ [Co(H 2 O) 6 ] 2+
98
Solubilities of complex ions Equilibria involving complex ions may involve multi-step processes in which individual ligands are added or removed.
99
Cobalt(II) chloride CoCl 2. 6H 2 O [Co(H 2 O) 6 ] 2+ (Cl - ) 2 CoCl 2. 2H 2 O blue purple magenta These species are quite soluble.
100
Ag + (aq) + NH 3(aq) Ag(NH 3 ) +
101
Ag + (aq) + NH 3(aq) Ag(NH 3 ) + (aq) [Ag(NH 3 ) + ] [Ag + ][NH 3 ] = 2.1 x 10 3 K 1 =
102
[Ag(NH 3 ) + ] [Ag + ][NH 3 ] = 2.1 x 10 3 K 1 = Ag(NH 3 ) + (aq) + NH 3(aq) Ag(NH 3 ) 2 + (aq) Ag + (aq) + NH 3(aq) Ag(NH 3 ) + (aq)
103
[Ag(NH 3 ) + ] [Ag + ][NH 3 ] = 2.1 x 10 3 K 1 = Ag(NH 3 ) + (aq) + NH 3(aq) Ag(NH 3 ) 2 + (aq) Ag + (aq) + NH 3(aq) Ag(NH 3 ) + (aq) K 2 = [Ag(NH 3 ) 2 + ] [Ag(NH 3 ) + ][NH 3 ] = 8.2 x 10 3
104
K 1, K 2 > 10 3 - large
105
Ag + in the presence of excess NH 3 is converted to 100% Ag(NH 3 ) 2 +
106
K 1, K 2 > 10 3 - large Ag + in the presence of excess NH 3 is converted to 100% Ag(NH 3 ) 2 +. Add 0.1 M AgNO 3 to 1 L of 1 M NH 3
107
K 1, K 2 > 10 3 - large Ag + in the presence of excess NH 3 is converted to 100% Ag(NH 3 ) 2 +. Add 0.1 M AgNO 3 to 1 L of 1 M NH 3 Initial condition: [Ag(NH 3 ) 2 + ] = 0.10 M [NH 3 ] = 0.80 M
108
Ag(NH 3 ) 2 + ( aq) Ag(NH 3 ) + (aq) + NH 3(aq) K = 1 K2K2 [Ag(NH 3 ) 2 + ] [Ag(NH 3 ) + ] [NH 3 ] = Init 0.100 M 0 0.80
109
Ag(NH 3 ) 2 + ( aq) Ag(NH 3 ) + (aq) + NH 3(aq) K = 1 K2K2 [Ag(NH 3 ) 2 + ] [Ag(NH 3 ) + ] [NH 3 ] = Init 0.100 M 0 0.80 -y +y + y Eq 0.100-y y 0.80 + y
110
Ag(NH 3 ) 2 + ( aq) Ag(NH 3 ) + (aq) + NH 3(aq) K = 1 8.2 x 10 3 (0.100-y) (y)(0.80+y) = Init 0.100 M 0 0.80 -y +y + y Eq 0.100-y y 0.80 + y
111
K = 1 8.2 x 10 3 (0.100-y) (y)(0.80+y) = Assume y is small 8y = 1.2 x 10 -4 y = 1.5 x 10 -5 M/L
112
Ag(NH 3 ) 2 + ( aq) Ag(NH 3 ) + (aq) + NH 3(aq) Init 0.100 M 0 0.80 -y +y + y Eq 0.100 1.5 x 10 -5 0.80
113
Ag(NH 3 ) + ( aq) Ag + (aq) + NH 3(aq) [Ag + ][NH 3 ] [Ag(NH 3 ) + ] = 1 K1K1 = 4.8 x 10 -4 Eq 0.100 1.5 x 10 -5 0.80
114
Ag(NH 3 ) + ( aq) Ag + (aq) + NH 3(aq) [Ag + ][NH 3 ] [Ag(NH 3 ) + ] = 1 K1K1 = 4.8 x 10 -4 Eq 0.100 1.5 x 10 -5 0.80 [Ag + ] = (1.5 x 10 -5 )(4.8 x 10 -4 ) 0.80
115
Ag(NH 3 ) + ( aq) Ag + (aq) + NH 3(aq) [Ag + ][NH 3 ] [Ag(NH 3 ) + ] = 1 K1K1 = 4.8 x 10 -4 Eq 0.100 1.5 x 10 -5 0.80 [Ag + ] = (1.5 x 10 -5 )(4.8 x 10 -4 ) 0.80 = 9 x 10 -9 M/L
116
Ag + (aq) + NH 3(aq) Ag(NH 3 ) + (aq) Ag(NH 3 ) + (aq) + NH 3(aq) Ag(NH 3 ) 2 + (aq) 9 x 10 -9 0.80 1.5 x 10 -5 1.5 x 10 -5 0.80 0.10
117
Formation of complex ions starting with AgCl.
118
AgCl (s) Ag + (aq) + Cl - (aq) K sp = 1.6 x 10 -10 By adding NaCl, increase in [Cl - ] (common ion effect) causes shift to AgCl (s)
119
K sp = 1.6 x 10 -10 Ag + (s) + 2 Cl - (aq) AgCl 2 - (aq) AgCl (s) Ag + (aq) + Cl - (aq) [AgCl 2 - ] [Ag + ][Cl - ] 2 K = 1.8 x 10 5 =
120
K sp = 1.6 x 10 -10 Ag + (s) + 2 Cl - (aq) AgCl 2 - (aq) AgCl (s) Ag + (aq) + Cl - (aq) [AgCl 2 - ] [Ag + ][Cl - ] 2 K = 1.8 x 10 5 = [Ag + ] = [Cl - ] = 1.3 x 10 -5
121
K sp = 1.6 x 10 -10 Ag + (s) + 2 Cl - (aq) AgCl 2 - (aq) AgCl (s) Ag + (aq) + Cl - (aq) [AgCl 2 - ][Ag + ][Cl - ] 2 = (1.8 x 10 5 ) [Ag + ] = [Cl - ] = 1.3 x 10 -5
122
K sp = 1.6 x 10 -10 Ag + (s) + 2 Cl - (aq) AgCl 2 - (aq) AgCl (s) Ag + (aq) + Cl - (aq) [Ag + ] = [Cl - ] = 1.3 x 10 -5 [AgCl 2 - ](1.3 x 10 -5 ) 3 = 4 x 10 -10 = (1.8 x 10 5 ) [AgCl 2 - ][Ag + ][Cl - ] 2 = (1.8 x 10 5 )
123
K sp = 1.6 x 10 -10 Ag + (s) + 2 Cl - (aq) AgCl 2 - (aq) AgCl (s) Ag + (aq) + Cl - (aq) [Ag + ] = 1.3 x 10 -5 [AgCl 2 - ](1.3 x 10 -5 ) = 2.34 M = (1.8 x 10 5 ) [AgCl 2 - ][Ag + ][Cl - ] 2 = (1.8 x 10 5 ) Change [Cl - ] 1 M
124
Hydrolysis by complex ions
125
+ H 2 O (l) + H 3 O +
126
+ H 2 O (l) + H 3 O + K a = [H 3 O + ][Fe(H 2 O) 5 OH 2+ ] [Fe(H 2 O) 6 3+ ] = 7.7 x 10 -3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.