Presentation is loading. Please wait.

Presentation is loading. Please wait.

On the Impact of Clustering on Measurement Reduction May 14 th, 2009 D. Saucez, B. Donnet, O. Bonaventure Thanks to P. François.

Similar presentations


Presentation on theme: "On the Impact of Clustering on Measurement Reduction May 14 th, 2009 D. Saucez, B. Donnet, O. Bonaventure Thanks to P. François."— Presentation transcript:

1 On the Impact of Clustering on Measurement Reduction May 14 th, 2009 http://inl.info.ucl.ac.be D. Saucez, B. Donnet, O. Bonaventure Thanks to P. François Université catholique de Louvain

2 Measurements to Improve netapps/service performance Bandwidth? Delay? Loss?

3 3 ? ? ? ? ? ? ? ? ? ? ? ? Scalability issues with large-scale measurements

4 4 How to reduce the measurement overhead? Limit the number of measured destinations  Clustering Limit the number of measuring sources  Collaboration

5 5 Limit the number of measured destinations Group destinations into Clusters

6 6 Clustering techniques Geographic Clustering  Group nodes by city n-agnostic clustering [1]  group nodes by /n prefix AS Clustering [2]  group nodes by Autonomous System BGP Clustering [3]  group nodes by longest match BGP prefix [1] Szymaniak, M. et al., Practical large-scale latency estimation. Computer Networks, 2008 [2] Krishnamurthy, B., Wang, J., Topology modeling via cluster graphs. ACM SIGCOMM Workshop on Internet Measurement (IMW), 2001 [3 ]Krishnamurthy, B., Wang, J., On network-aware clustering of web clients. ACM SIGCOMM, 2000

7 7 How clustering impacts the accuracy?

8 8 Evaluation setup Maxmind + Routeviews  1month traceroute traces (Archipelago)‏ Two monitors:  san-us (San Diego, US)‏  bcn-es (Barcelona, SP)‏*

9 9 RTT error (bcn-es)‏ Geographic, AS n-agnostic, BGP 15% with more than 100% error 10% with more than 200% error 90% with less than 50% error 50% with less than 10% error

10 10 Clustering reduces the number of measured destinations without loosing too much accuracy...... can we reduce the number of source of measurements?

11 11 Limit the number of measuring sources Make measurement sources collaborating

12 12 Collaboration fundamentals Popular destinations are measured by several nodes  Popularity d : #nodes measuring d Different collaboration approaches  Centralized authority/measurement source  Distributed measurements (ICS)‏

13 13 How much reduction can we obtain?

14 14 When can we observe measurement reduction? Clustering reduces measurements if a cluster C covers at least two measured destinations Collaboration reduces measurements if at least two topologically closed sources have to measure the same destination

15 15 Evaluation setup Campus traffic  UCL, 1 link to Belnet @1Gbps 1 month full NetFlow traces  7.45 TB of filtered outgoing traffic 10K sources, 36M destinations

16 16 Will collaboration help? 74% of the destinations are contacted by only 1 source Some destinations are contacted by 1K+ sources! Few percents are contacted by 10+ sources

17 17 Will clustering help? At least 45% of the clusters cover more than 10 nodes # of destinations

18 18 Conclusion Clustering/Collaboration to reduce measurement overhead Reduction/accuracy tradeoff Simple, though efficient techniques, tend to preserve accuracy

19 19 Questions? http://inl.info.ucl.ac.be

20 20 Backup

21 21 Combine Clustering and Collaboration

22 22 Hop error (bcn-es)‏ 0% more than 50% error 10% more than 50% error bigger the n, smaller the error Geographic, AS n-hybrid, n-agnostic, BGP

23 23 Error variation inside clusters 75 th percentile 50 ty percentile 25 th percentile

24 24 The reduction Collaboration only: 40% gain 20-hyb only: 62% gain 20-hyb + Collaboration: 99% gain Collaboration + Clustering always better than clustering or collaboration only

25 25 Are clustering and collaboration so different? Let C, a cluster of nodes to measure Let S C, the set of nodes measuring C  S C is cluster  nodes in S C can collaborate => S C is the set of collaborating nodes

26 26 4.43.50.2 4.150.50.2 4.200.50.2 n-hybrid Clustering 4.0.0.0/8... 4.128.0.0/94.0.0.0/9 4.23.88/23 4.43.50/24... A B C A B C BGP clusters 4.150.48.0/20 4.200.48.0/20 20-hybrid clusters BGP prefixes can be huge: => Group nodes by longest match BGP prefix down to a given length

27 27 traceroute to 4.150.50.2 (4.150.50.2), 30 hops max, 40 byte packets 1 192.168.1.1 (192.168.1.1) 3.535 ms 3.710 ms 3.967 ms 2 c-69-180-16-1.hsd1.ga.comcast.net (69.180.16.1) 11.983 ms 13.665 ms 14.154 ms 3 ge-2-1-ur01.a2atlanta.ga.atlanta.comcast.net (68.86.108.17) 17.101 ms 17.618 ms 18.499 ms 4 te-9-1-ur02.a2atlanta.ga.atlanta.comcast.net (68.85.232.38) 17.983 ms 18.840 ms 19.282 ms 5 te-9-3-ur01.b0atlanta.ga.atlanta.comcast.net (68.86.106.54) 20.043 ms 20.624 ms 21.441 ms 6 po-4-ar01.b0atlanta.ga.atlanta.comcast.net (68.86.106.9) 21.963 ms 8.144 ms 12.080 ms 7 pos-1-3-0-0-cr01.atlanta.ga.ibone.comcast.net (68.86.90.125) 14.802 ms 14.893 ms 15.513 ms 8 te-9-1.car1.Atlanta2.Level3.net (4.71.252.29) 113.775 ms 113.945 ms 114.383 ms 9 ae-62-51.ebr2.Atlanta2.Level3.net (4.68.103.29) 16.732 ms 17.245 ms 17.630 ms 10 ae-3.ebr2.Chicago1.Level3.net (4.69.132.73) 44.394 ms 45.461 ms 44.855 ms 11 ae-21-52.car1.Chicago1.Level3.net (4.68.101.34) 42.847 ms ae-21-54.car1.Chicago1.Level3.net (4.68.101.98) 41.702 ms ae-21-52.car1.Chicago1.Level3.net (4.68.101.34) 42.151 ms... traceroute to 4.200.50.2 (4.200.50.2), 30 hops max, 40 byte packets 1 192.168.1.1 (192.168.1.1) 1.800 ms 2.745 ms 3.339 ms 2 c-69-180-16-1.hsd1.ga.comcast.net (69.180.16.1) 11.581 ms 14.657 ms 15.170 ms 3 ge-2-1-ur01.a2atlanta.ga.atlanta.comcast.net (68.86.108.17) 13.574 ms 17.884 ms 18.412 ms 4 te-9-1-ur02.a2atlanta.ga.atlanta.comcast.net (68.85.232.38) 18.855 ms 19.299 ms 19.680 ms 5 te-9-3-ur01.b0atlanta.ga.atlanta.comcast.net (68.86.106.54) 20.549 ms 21.048 ms 21.990 ms 6 po-4-ar01.b0atlanta.ga.atlanta.comcast.net (68.86.106.9) 21.430 ms 7.738 ms 9.826 ms 7 pos-1-4-0-0-cr01.atlanta.ga.ibone.comcast.net (68.86.90.121) 11.735 ms 12.293 ms 15.289 ms 8 * * * 9 ae-62-51.ebr2.Atlanta2.Level3.net (4.68.103.29) 25.935 ms 26.458 ms 26.833 ms 10 ae-63-60.ebr3.Atlanta2.Level3.net (4.69.138.4) 28.142 ms ae-73-70.ebr3.Atlanta2.Level3.net (4.69.138.20) 27.507 ms ae-63-60.ebr3.Atlanta2.Level3.net (4.69.138.4) 28.508 ms 11 ae-7.ebr3.Dallas1.Level3.net (4.69.134.21) 50.636 ms 49.957 ms * 12 ae-3.ebr2.LosAngeles1.Level3.net (4.69.132.77) 67.687 ms 61.311 ms 77.365 ms 13 ae-72-72.csw2.LosAngeles1.Level3.net (4.69.137.22) 75.953 ms ae-62-62.csw1.LosAngeles1.Level3.net (4.69.137.18) 68.112 ms 67.813 ms 14 ge-9-2.core1.LosAngeles1.Level3.net (4.68.102.167) 69.337 ms ge-5-2.core1.LosAngeles1.Level3.net (4.68.102.135) 68.195 ms ge-5-1.core1.LosAngeles1.Level3.net (4.68.102.71) 71.751 ms... Traceroute verdict*

28 28 N-hybrid example 4.0.0.0/8 4.0.0.0/9 4.128.0.0/9 4.20.90.56/29 4.21.103.0/24 4.224.56.0/24 4.23.112.0/24 4.23.113.0/24 4.23.114.0/24 4.23.88.0/23 4.23.88.0/24 4.23.89.0/24 4.23.92.0/22 4.23.92.0/23 4.23.94.0/23 4.36.118.0/24 4.38.0.0/20 4.38.0.0/21 4.38.8.0/21 4.43.50.0/23 4.43.50.0/24 4.43.51.0/24 4.67.104.0/21 4.67.96.0/20 4.67.96.0/21 4.78.22.0/23 4.78.56.0/23 4.79.181.0/24 4.79.201.0/26 4.79.22.0/23 4.79.248.0/24 Level 3: 4.0.0.0/8  4.43.50.2? BGP: 4.43.50.0/24 20-hybrid: 4.43.50.0/24  4.150.50.2? BGP: 4.128.0.0/9 20-hybrid: 4.150.48.0/20  4.200.50.2? BGP: 4.128.0.0/9 20-hybrid: 4.200.48.0/20 BGP (Routeviews)‏ Natural follow up, came for free → dessin

29 29 References [1] Xie et al., P4P: Provider Portal for Applications, in Proc. ACM SIGCOMM, 2008 [2] Aggarwal et al., Can ISPs and P2P systems co-operate for improved performance?, ACM SIGCOMM Computer Communications Review (CCR), 37(3):29–40, July 2007 [3] Saucez et al., Interdomain Traffic Engineering in a Locator/Identifier Separation Context, Internet Network Management Workshop 2008 [4] Dabek et al., Vivaldi, a decentralized network coordinated system. ACM SIGCOMM, 2004 [5] Krishnamurthy, B., Wang, J., Topology modeling via cluster graphs. ACM SIGCOMM Workshop on Internet Measurement (IMW), 2001 [6] Szymaniak, M. et al., Practical large-scale latency estimation. Computer Networks, 2008 [7 ]Krishnamurthy, B., Wang, J., On network-aware clustering of web clients. ACM SIGCOMM, 2000


Download ppt "On the Impact of Clustering on Measurement Reduction May 14 th, 2009 D. Saucez, B. Donnet, O. Bonaventure Thanks to P. François."

Similar presentations


Ads by Google