Download presentation
Presentation is loading. Please wait.
Published byVirgil Taylor Modified over 9 years ago
1
Objective: Solve a system of two linear equations in two variables by elimination. Standard: 2.8.11.H. Select and use an appropriate strategy to solve systems of equations. 3.2 Solving Systems by Elimination
2
I. Elimination Method The elimination method involves multiplying and combining the equations in a system in order to eliminate a variable. 1. Arrange each equation in standard form, Ax + By = C. 2. If the coefficients of x (or y) are the same number, use subtraction. 3. If the coefficients of x (or y) are opposites, use addition. 4. If the coefficients are different, multiply one or both to make them the same or opposite numbers. Then use step 2 or 3 to eliminate the variable. 5. Use substitution to solve for the remaining variable.
3
I.Independent Systems Ex 1. Use elimination to solve the system. Check your solution. a. 2x + y = 8 x – y = 10 3x = 18 x = 6 2(6) + y = 8 12 + y = 8 y = - 4 Solution is (6, - 4) Consistent Independent
4
b. 2x + 5y = 15 –4x + 7y = -13
5
c. 4x – 3y = 15 8x + 2y = -10
6
Ex 2. This table gives production costs and selling prices per frame for two sizes of picture frames. How many of each size should be made and sold if the production budget is $930 and the expected revenue is $1920?SmallLargeTotal ProductionCost$5.50$7.50$930 Selling Price $12$15$1920 5.5x + 7.5y = 930 12x + 15y = 1920 * Multiply by -2 -11x – 15y = -1860 12x + 15y = 1920 x= 60 small y = 80 large
7
II. Dependent and Inconsistent Systems Ex 1. Use elimination to solve the system. Check your solution. a. 2x + 5y = 12 2x + 5y = 15 ** Multiply by – 1 to first equation -2x – 5y = -12 2x + 5y = 15 0 = 3 Empty Set Inconsistent Parallel Lines (both equations have a slope of -2/5)
8
b. -8x + 4y = -2 4x – 2y = 1 -8x + 4y = - 2 8x - 4y = 2 Multiplied by 2 0 = 0 ∞ Consistent Dependent
9
c. 5x - 3y = 8 10x – 6y = 18
10
III. Independent, Dependent and Inconsistent Systems a. 6x – 2y = 9 6x – 2y = 7
11
b. 4y + 30 = 10x 5x – 2y = 15
12
c. 5x + 3y = 2 2x + 20 = 4y 4(5x + 3y) = 4(2) multiply both sides by 4 3(2x – 4y ) = 3(-20) multiply both sides by 3 20x + 12y = 8 6x – 12y = - 60 26x = - 52 x = -2 y = 4 (-2, 4) Consistent independent
13
Writing Activities
15
3.2 Lesson Quiz
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.