Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electron crystallographic methods of solving modulated structures Electron microscopy X-ray crystallography Direct methods Pseudo translational symmetries.

Similar presentations


Presentation on theme: "Electron crystallographic methods of solving modulated structures Electron microscopy X-ray crystallography Direct methods Pseudo translational symmetries."— Presentation transcript:

1 Electron crystallographic methods of solving modulated structures Electron microscopy X-ray crystallography Direct methods Pseudo translational symmetries Dealing with pseudo symmetries Two-stage image processing in Electron microscopy Translational phase ambiguity Ab initio solution of superstructures Ab initio solution of modulated and composite structures Acting as a tool of image processing Pseudo centro symmetry Enantiomorphous phase ambiguity Protein SAD/SIR phasing Protein model completion

2 电子显微学 X - 射线晶体学 直接法 赝平移对称 处理赝对称性 两步法电子 显微学图像处理 超结构 从头求解 用于图像处理 赝中心对称 蛋白质 SAD/SIR 相位推演 蛋白质 模型完整化 电子晶体学方法 求解调制结构 从头测定调制结构 和组合结构

3 Initial phasing and Model completion of Proteins Image processing in Electron Microscopy Software Modulated and Composite structures

4

5

6 Enantiomorphous phase ambiguity resolved by the direct method Sample: ZCW; Space group: P2 1 Acta Phys. Sin. 27, 169-174 (1978) Enantiomorphous phase ambiguity resolved by the direct method Direct method result Final map a c b c b c K Before treatment After treatment

7 X-ray Crystallography Objective lens Back focal plane Image plane Object Diffraction pattern Blurred image Fourier transform Fourier transform Electron microscopy Object Patterson map Diffraction pattern Diffraction wave front

8 Object Patterson map Diffraction wave front Diffraction pattern X-ray Crystallography Multiplied with F* h Objective lens Back focal plane Image plane Object Diffraction pattern Blurred image Multiplied with a contrast transfer function Fourier transform Fourier transform Electron microscopy Structure image blurred by convoluting with the Fourier transform of a contrast transfer function Structure image blurred by convoluting with It’s inverse

9 Object Patterson map Diffraction wave front Diffraction pattern X-ray Crystallography Multiplied with F* h Objective lens Back focal plane Image plane Object Diffraction pattern Blurred image Multiplied with a contrast transfer function Fourier transform In the derivation of X-ray diffraction phases, direct methods are acting as a tool of image processing. They convert the blurred image  Patterson map  to the deblurred image  electron density map. It is reasonable to expect that direct methods can be used in high-resolu- tion electron micro- scopy as a tool of image processing. Fourier transform Electron microscopy

10

11

12

13

14  <F ><F > F oF o A B F” F’ ””      ’’  F” F *F * Phase ambiguity intrinsic in SAD F F 

15 A B  N  FRFR FDFD FNFN  D  Phase ambiguity intrinsic in SIR DD RR RR    D NN    N

16 – SAD phase doublet

17 D – derivative, R – replacing atoms, N – native – SIR phase doublet

18 Breaking SAD/SIR phase ambiguity by direct methods

19 SAD/SIR data P + (  h ) = 1/2 End Calculate P + (  h ) E h,  ’ h,  h  Calculate m h and  h,best

20

21 Lysozyme Space group: P4 3 2 1 2 Unit cell: a = 78.4, c = 37.0Å Number of residues in the ASU: 129 Resolution limit: 2.01Å; Multiplicity: 47.2 Anomalous scatterer: S (10 ) X-rays: Cr-K  = 2.291Å,  f ” = 1.14 Bijvoet ratio: / = 2.4% Data provided by Prof. Isao Tanaka and Dr. Nobuhisa Watanabe

22 Azurin Space group: P4 1 22 Unit cell: a = b = 52.65, c = 100.63Å Number of residues in the ASU: 129 Resolution limit: 1.9Å Multiplicity: 10.0 Anomalous scatterer: Cu (1) X-rays: synchrotron radiation  = 0.97Å  f” = 2.206 Bijvoet ratio: / = 1.44% Data provided by Prof. S. Hasnain

23 Xylanase Space group: P2 1 Unit cell: a = 41.07, b = 67.14, c = 50.81Å  = 113.5 o Number of residues in the ASU: 303 Resolution limit: 1.75Å; Multiplicity: 15.9 Anomalous scatterer: S (5 ) X-rays:  synchrotron radiation  = 1.488Å;  f ” = 0.52 Bijvoet ratio: / = 0.56% Data courtesy of Dr. Z. Dauter, National Cancer Institute, USA

24 Alanine racemase Space group: C 2 2 2 1 Unit cell: a = 72.68 b = 76.13, c = 136.27Å Number of residues in the ASU: 357 Resolution limit: 2.3Å Data collection range: 360 o Anomalous scatterer: Se (8), S (6), P (1) X-rays: Cr-K , = 2.291Å Bijvoet ratio: / = 2.8% Data provided by Dr. Cheng Yang

25 Alanine racemase Space group: C 2 2 2 1 Unit cell: a = 72.68 b = 76.13, c = 136.27Å Number of residues in the ASU: 357 Resolution limit: 2.3Å Data collection range: 360 o Anomalous scatterer: Se (8), S (6), P (1) X-rays: Cr-K , = 2.291Å Bijvoet ratio: / = 2.8% Data provided by Dr. Cheng Yang

26 SIR SOLVE/RESOLVE + OASIS/DM SOLVE/RESOLVE

27 SAD SOLVE/RESOLVE + OASIS/DM

28 SIR SOLVE/RESOLVE + OASIS/DM SIR SOLVE/RESOLVE SAD SOLVE/RESOLVE + OASIS/DM

29 SOLVE/RESOLVE + OASIS/DM SOLVE/RESOLVE SAD SOLVE/RESOLVE + OASIS/DM

30 2.1Å 3.0Å 3.5Å 4.0Å


Download ppt "Electron crystallographic methods of solving modulated structures Electron microscopy X-ray crystallography Direct methods Pseudo translational symmetries."

Similar presentations


Ads by Google