Presentation is loading. Please wait.

Presentation is loading. Please wait.

 0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics.

Similar presentations


Presentation on theme: " 0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics."— Presentation transcript:

1  0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics Comparison with SND and CMD 2 Conclusions (Search for  a 0  ) P.Gauzzi Workshop on KLOE Physics La Biodola – May 23-25, 2001

2  0  Signal:  (nb) expected (  =1)  a 0  0  0.10 1700  0  0  0  0.037 630 Background: e + e -  0  0  0  0.74 12500  0  0  0  0  0.10 1700  f 0  0  0  0.37 6300 e + e -  0  0  5.6x10 -3 100  3  16.3 3500*   0  0  0  13.4 6000* Cross-sections from PDG-2000; a 0, f 0, and  0 from Novosibirsk data Large errors on cross sections 15% — 25 % * reconstructed as 5 photon events (acc. to MC)

3 Initial sample Runs 15174—17033  Ldt  17 pb -1 Events from radiative stream (selected by nrfilt) “ “ substream neu_min_5g (no tracks and at least 5 prompt  ) First selection 5 prompt photons ( t.w.= min(5  t,, 2 ns) ) > 21 o for each photon total energy > 900 MeV (to reject background) Initial sample : 36979 events  (tr.+nrfilt+ 5 pr. photons) signal 53 % (  3%) 2084 expected evts  0  0  53 % 10865  3  3500   0  0  0  6000

4 Analysis scheme First kinematic fit: 30 parameters (E,x,y,z,t for each photon + X,Y,Z of the I.P., E e+, E e- ) 9 constraints (energy and momentum conservation + T-L/c=0 for each photon)  9 ndf  cut:  2 /ndf < 10 Best photon pairing in the following hypotheses: 1)  0  2)  0  0  3)  0   0  0  (  mass, E  0 in the selection  2 ) 4)  3  (  mass, E rad in the selection  2 )   rejection   3  rejection Second kinematic fit : 30 parameters, 11 constraints ( 9 +  and  0 masses for 1) or two  0 masses for 2) 3) ) For each event this fit is performed three times  hyp. 1), 2) and 3)  cut:  2 /ndf (hyp. 1) < 10 Final cuts:   0  0  rejection   7  rejection

5 MC samples Samples used to study cuts and evaluate efficiencies :  a 0  0  40000 evts  0  (a 0  “flat”) 45000 e + e -  0  0  0  80000 e + e -  0  0  30000  0  0  0  0  70000  0  0  0  50000  f 0  0  0  ( old generation ) 5000  3  300000   0  0  0  285000 Cuts on the signal have been studied with  0  (a 0  “flat”) in order to avoid introducing any bias on the unknown a 0 shape

6 a 0  “flat”

7  0  0  rejection 00 00    Second fit in the  0  0  0  hypothesis  = angle between the photon from  and the  0 not coming from  in the CoM system of (  0  0 )  0   0  0  0  f0f0  0   0  0 

8 Sample composition Data – MC (without  ) Agreement is not good, but expected number of events have large errors signal  = 48 % 824 expected evts   0 + f 0  30 % 5719  0  0 37 % 635   0  0  0  3 x 10 -3 736 ?

9 Sample composition Fit the MC distributions to data: 1)  1 (  +  ) +  2 (  ) +  3 (f 0  ) 2)(  +  ) fixed +  1 (  7  ) +  2 (  ) +  3 (f 0  ) Data – fit Data – fit 1)  1  1.25  2   3  0.8 2)  1  0.95  2   3  0.8

10 Sample composition Check with the other variable of the scatter plot (E  ) Data – MC With parameters from 1 st fit without  0  0  0  With parameters from 2 nd fit with  0  0  0  Sizeable content of  0  0  0   decrease  0 and f 0  cross-sections by 20% (see Simona’s results)

11  0  0  rejection Data – MC There are many events that have good probability to be both  0  0  and  0   2  -  2 

12  0  0  0  rejection Cluster of maximum energy Data – MC  invariant mass after the elliptic cut  2  cut Data – MC  7  E max (MeV) M  /  

13 Efficiencies  a 0  0  27%  0  0  0  27% e + e -  0  0  27% e + e -  0  0  0  3.5 x 10 -3  0  0  0  0  5%  f 0  0  0  1.4 x 10 -3 (depends on the shape)  3  2 x 10 -6   0  0  0  5 x 10 -4

14 Mass spectrum Data: 666 events Backgrounds (MC) ––  0  0  (129  3.7) ––  7  (118  10) ––  0  0  (21  0.2) –– total (268  10.7) M  (MeV)

15 cos of rad.  Data: 666 events –– background (268 events) –– signal (MC) + background

16 Comparison data-MC  2 of the first fit, ndf =9 (without mass contraints)  2 of the second fit, ndf =11 (with mass contraints) Data – MC Data – MC

17 Comparison data-MC Data – MC Data – MC M  /   M  /   Pion and eta mass (before the second fit)

18 Branching ratio M  (MeV)

19  a 0  0  If interference in   (a 0  +  0 )   0  is negligible (Achasov-Gubin: Phys.Rev.Lett.D63,094007) N(  0 ) = 171  60(from cross-sect.) events

20  a 0  0  M  (MeV)

21 Efficiency M  (MeV)  Not corrected for photon detection efficiency

22 Efficiency M  (MeV) dBr/dM (MeV -1 ) Next step: M  (MeV)

23 QCAL veto Veto = hit in QCAL on time with the event  does not change  (   7  )  3 x 10 -4 (40% less)  564 events selected (102 rej.) M  (MeV)

24 Systematics Background subtraction (main contribution): B = 118(  ) + 150(others) 20% uncertainty on cross-sections   Br/Br = 8% uncertainty on  to be evaluated Efficiency : uncertainty to be evaluated N  : uncertainty on  Ldt “ on   : 5% (from Kloe memo 234)

25 Comparison with SND SND: 39 events with = 2.1% 2x10 7  (Phys. Lett. B 279 (2000),53) Br=(0.88  0.14  0.09)x10 -4 S/B  0.6 KLOE bckg subtracted and corrected for efficiency S/B = 1.5 M  (MeV) dBr/dM (MeV -1 ) SND: from tab.1 of their paper KLOE spectrum before bckg subtraction, not corrected for eff. (No normaliz.) (Normalized) M  (MeV)

26 Comparison with CMD-2 CMD-2: after bckg subtraction; = 6% 1.9 x10 7  Br = (0.90  0.24  0.10) x 10 -4 (Phys.Lett.B 462 (1999), 380) KLOE spectrum bckg subtracted (Normalized)

27 Conclusions  Ldt  17 pb -1 from 2000 data analyzed 666 events survive the selection 268 background events estimated from MC 398 signal events Br(  0  ) = (0.71  0.05(stat)) x 10 -4 good agreement between data and MC Efficiency as a function of M  : need a better evaluation Systematics: bckgd. subtraction is dominant(  8%) uncertainty on efficiencies to be evaluated Fit to the spectrum has to be performed in order to get the a 0 parameters Comparison with the Novosibirsk results: our Br is 20% less, BUT: we have much more statistics, greater efficiency, better S/N ratio.

28 Efficiencies  a 0  0  27% 26.8%  0  0  0  27% 26.8% e + e -  0  0  26% 25.7% e + e -  0  0  0  3.5 x 10 -3 3.4 x 10 -3  0  0  0  0  5% 5%  f 0  0  0  1.4 x 10 -3 1.4 x 10 -3   0  0  0  5.3 x 10 -4 4.1 x 10 -4  2 /ndf<10  2 /ndf<5

29  2 /ndf<5  0  0  0  63 (not bckg.) e + e -  0  0  8 e + e -  0  0  0  37  0  0  0  0  83  f 0  0  0  7   0  0  0  91 Expected events Total. 226  9 From data : N = 599 events

30  0  0  0  Cut  e + e -  0  0  0  26.8%  f 0  0  0  2.7% 166  f 0  0  0  (f0g_neu4) 5.1% 314  0  0  0  0  8.0% 133  0  2.5% 37  5x10 -4 226 From data : 3443 events Total : 562 – 710


Download ppt " 0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics."

Similar presentations


Ads by Google