Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003.

Similar presentations


Presentation on theme: "Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003."— Presentation transcript:

1 Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003

2 T. Nelson, DIS 2003 - Slide 2 Outline Experimental Status Electroweak Top Precision Searches Outlook

3 T. Nelson, DIS 2003 - Slide 3 Upgrades: E CM : 1.8  1.96 TeV E CM : 1.8  1.96 TeV Luminosity: 10 31  10 32 Luminosity: 10 31  10 32 Run 2b (396 ns) Run 2b (396 ns) Making progress… Currently less data approved for analysis than Run I 72 pb -1 72 pb -1 57 pb -1 w/ silicon 57 pb -1 w/ silicon Tevatron Status Luminosity [particles/cm 2 /s] Run 1b Current 2a Goal Run 2b

4 T. Nelson, DIS 2003 - Slide 4 The CDF-II Detector Silicon Tracking Detectors Central Drift Chamber Solenoid Coil /TOF EM Calorimeter Hadronic Calorimeter Muon Drift Chambers Muon Scintillator Counters Major Upgrade: New Silicon Tracking New Silicon Tracking Extended coverage 3-D reconstruction New Drift Chamber New Drift Chamber Faster (2  s  396 ns) dE/dx 96 dE/dx samples/track New Forward Calorimeter New Forward Calorimeter 1.3 <|  |<3.5, same technology as central Added Time-Of-Flight Added Time-Of-Flight ~ 100 ps resolution Extended muon coverage Extended muon coverage |  | < 1  |  |<1.5 New Trigger New Trigger Tracks at L1 (p T >1.5 GeV/c) Silicon Tracks at L2 (p T >2.0 GeV/c)

5 T. Nelson, DIS 2003 - Slide 5 Tracking Upgrades Tracking is fundamental to lepton identification   = - ln ( tan (  /2)) “central”:|  | < 1.1 “forward”: |  | > 1.1

6 T. Nelson, DIS 2003 - Slide 6 Silicon Upgrade SVX Layer 00 SVXII ISL Run I Run 2a Silicon tracking is fundamental to tagging b -jets  = - ln ( tan (  /2)) tt  e+jets

7 T. Nelson, DIS 2003 - Slide 7 Precision Electroweak (2 fb -1 ) Must walk before we can run!

8 T. Nelson, DIS 2003 - Slide 8  W  B ( W  e ) Selections : ( acc   = 19.3% ) Electron (central only) – Isolated EM Calorimeter cluster – E T > 25 GeV – Matched track, P T > 10 GeV Missing E T > 25 GeV Sample : ( 72 pb -1 Run II) 38628 events – QCD: 3.5% – W   : 2.0% – Z  ee : 0.9%  W  B = 2.64  0.01 stat  0.09 sys  0.16 lum nb

9 T. Nelson, DIS 2003 - Slide 9  W  B ( W   ) Selections : ( acc   = 10.1% ) Muon (central only) – Muon hits – Matched track, P T > 20 GeV – Min. Ionization in calorimeter Missing E T > 20 GeV Cosmic & Z   vetos Sample : ( 72 pb -1 Run II) 21599 events – Z   : 5.3% – W   : 3.2% – Cosmics: 1.3% – QCD: 1.0%  W  B = 2.64  0.02 stat  0.12 sys  0.16 lum nb

10 T. Nelson, DIS 2003 - Slide 10  W  B ( W   ) Selections : ( acc   = 0.92% ) Tau (central only) – Isolated Hadronic Calorimeter cluster – P T & number of tracks in 10  /30  cones – E T > 25 GeV Missing E T > 25 GeV Dijet veto Sample : ( 72 pb -1 Run II) 2345 events – QCD: 15% – W  e : 4.4% – W   : 3.9% – Cosmics: 1.5% – Z   : 0.9%  W  B = 2.62  0.07 stat  0.21 sys  0.16 lum nb

11 T. Nelson, DIS 2003 - Slide 11  Z  B ( Z  ee ) Selections : ( acc   = 9.5% ) 2 Electrons (central only) – Isolated EM Calorimeter clusters – E T > 25 GeV – Opp-sign matched tracks, P T > 10 GeV 66 < M ee < 116 GeV Sample : ( 72 pb -1 Run II) 1830 opposite-sign events – QCD: 0.5% – Z   : 0.05%  Z  B = 267  6 stat  15 sys  16 lum pb

12 T. Nelson, DIS 2003 - Slide 12  Z  B ( Z   ) Selections : ( acc   = 9.2% ) 2 Muons (central only) – At least one with muon hits – Opp-sign matched tracks, P T > 20 GeV – Min. Ionization in calorimeter Cosmic veto 66 < M ee < 116 GeV Sample : ( 72 pb -1 Run II ) 1631 opposite-sign events – Cosmics: 0.8% – QCD:< 0.2%  Z  B = 246  6 stat  12 sys  15 lum pb

13 T. Nelson, DIS 2003 - Slide 13 Clear Z   e  h signal Background needs further study Goal of preliminary cross section by summer Z   

14 T. Nelson, DIS 2003 - Slide 14  W,  Z Summary combined  W  B ( W  l ) = 2.640 ± 0.012 stat ± 0.093 syst ± 0. 158 lum nb combined  Z  B ( Z  ll ) = 251.5 ± 4.3 stat ± 10.6 syst ± 15.1 lum pb

15 T. Nelson, DIS 2003 - Slide 15  W   B ( W  e,  ) Selections : Electron or Muon (central only) + Missing E T – Same selections as used for  W 1 Photon (central only) – E T > 7 GeV,  R ( ,l ) > 0.7 * – Isolated EM calorimeter cluster – Tracking isolation cuts Z  ll & Cosmic(  ) vetos Sample : ( 72 pb -1 Run II) 43 (38) events in e (  ) – W  e (  ) + jet : 11.5 (5.6) events – Z  ee (  ) +  : 2.4 (5.1) events – W   +  : 0.5 (0.7) events  W  ( W  e ) * = 17.2  3.8 stat  2.8 sys  1.0 lum pb  W  ( W   )* = 19.5  4.5 stat  2.4 sys  1.2 lum pb SM Expected: ~19 pb e+ 

16 T. Nelson, DIS 2003 - Slide 16  Z   B ( Z  ee,  ) Selections : 2 Electrons or Muons (central only) – Same selections as used for  Z M ll > 40 GeV 1 Photon (central only) – E T > 7 GeV,  R ( ,l ) > 0.7 * – Isolated EM calorimeter cluster – Tracking isolation cuts Z  ll & Cosmic(  ) vetos Sample : ( 72 pb -1 Run II) 11 (14) opposite-sign ee (  ) events – Z  ee (  ) + jet : 0.5 (0.5) events  Z   B ( Z  ee )* = 5.5  1.7 stat  0.6 sys  0.3 lum pb  Z   B ( Z   )* = 6.0  1.6 stat  0.7 sys  0.4 lum pb SM Expected: ~5 pb e+ 

17 T. Nelson, DIS 2003 - Slide 17 Adding Forward Acceptance QCD backgrounds are many times larger without tracking requirements Tracking is critical Have standalone silicon tracking in forward region: much less efficient and clean than central drift chamber + silicon Need a way to reduce the problem!

18 T. Nelson, DIS 2003 - Slide 18 Calorimeter-seeded e  tracking Two points and a curvature define a unique helix… Primary vertex – x-y : beamspot (~40 um) – z: event vertex (~100 um) Calorimeter shower-maximum hit – ~1 mm Calorimeter E T  |curvature| seed tracks Silicon hits Silicon Track

19 T. Nelson, DIS 2003 - Slide 19 Forward W  e Selections : Electron (forward only) – Isolated EM Calorimeter cluster – E T > 20 GeV – Calorimeter-seeded track Missing E T > 25 GeV Sample : ( 60 pb -1 Run 2 data) ~20,000 events QCD background : without forward tracking: ~18% with forward tracking: ~3% Similar to central background

20 T. Nelson, DIS 2003 - Slide 20 W  e Charge Asymmetry x = p (parton)/ p (proton) pdf(x) u d Forward tracking is critical here!

21 T. Nelson, DIS 2003 - Slide 21 W  e Charge Asymmetry Selections : Electron (central+forward) – Isolated EM Calorimeter cluster – E T > 20 GeV – Calorimeter-seeded track Missing E T > 30 GeV Sample : 21317 events Blind analysis: Plotting sensitivity only Higher “specific sensitivity” in forward region than Run 1 results to be unblinded for summer CTEQ-3M - MRS-R2

22 T. Nelson, DIS 2003 - Slide 22 Selections : 2 Electrons / Muons (central only) – Same cuts as EWK measurements Veto 76 < M ll < 106 GeV, cosmics & conversions Missing E T > 25 GeV   ( missing E T, nearest lepton ) N jets = 0 ( E t > 10 GeV,  < 2.0) Sample : ( 72 pb -1 Run II) 2 events – Background: 1.5  0.6 events ( QCD + DY + WZ + tt ) SM Expected: 2.8  0.6  WW ( WW  ll ) just the appetizer…

23 T. Nelson, DIS 2003 - Slide 23  tt ( tt  ll ) Selections : 2 Electrons / Muons (central only) – Same cuts as EWK measurements Veto 76 < M ll < 106 GeV, cosmics & conversions Missing E T > 25 GeV   ( missing E T, nearest lepton ) H T =  E T + Missing E T > 200 GeV N jets  2 ( E t > 10 GeV,  < 2.0) Sample : ( 72 pb -1 Run II) 5 events – Background: 0.30  0.12 events ( DY + WW/WZ +  + QCD )  tt =13.2  5.9 stat  1.5 sys pb

24 T. Nelson, DIS 2003 - Slide 24  tt ( tt  l+jets ) Selections : Electron / Muon (central only) – Same cuts as EWK measurements Veto 76 < M ll < 106 GeV, cosmics and conversions Missing E T > 20 GeV N jets  3 (jet E T > 15 GeV) At least one jet with secondary vertex tag from silicon Sample : (57.5 pb -1 Run 2 data) 15 events – Background: 3.8  0.5 events (W+jets & mistags dominant)  tt = 5.3 ± 1.9 stat ± 0.8 syst pb signal region control region

25 T. Nelson, DIS 2003 - Slide 25  tt Summary Run II

26 T. Nelson, DIS 2003 - Slide 26 M t ( l+jets ) signal background

27 T. Nelson, DIS 2003 - Slide 27 Electroweak-related Searches A Challenging Goal : Model-independent, “signature-based” searches Focus on Final States : Many possibilities for new physics Very simple Backgrounds are “precision physics” “Precision Searches” Electroweak final states are ideal here…

28 T. Nelson, DIS 2003 - Slide 28 Z, extra dimensions, compositeness High-mass e + e - ? ? central-central + central-forward (see A. Munar’s talk)

29 T. Nelson, DIS 2003 - Slide 29 Angular Distributions: Interference p p  e+e+ e-e- Forward Backward + + + 2 1+ cos 2  cos  ? ? central-central + central-forward

30 T. Nelson, DIS 2003 - Slide 30 Forward di-electrons Selections : Electrons (forward only) – Isolated EM Calorimeter cluster – E T > 15 GeV – Calorimeter-seeded track Sample : ( 60 pb -1 Run 2 data) 843 events QCD background ( M ee > 100 GeV): w/o tracking: 60  5 stat % with tracking:4  3 stat % Similar to central-central background

31 T. Nelson, DIS 2003 - Slide 31 Outlook Goal: 200-320 pb -1 delivered in FY03 Store Number Total Luminosity ( pb -1 ) 100 200 150 Delivered To Tape CDF efficiency continues to improve, as well 2001 20022003

32 T. Nelson, DIS 2003 - Slide 32 Conclusions Preliminary results established for major electroweak benchmarks Broad top physics program is underway Promising searches in clean electroweak final states now match Run I sensitivity Improved detector, new techniques will extend reach beyond expected luminosity increases


Download ppt "Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003."

Similar presentations


Ads by Google