Presentation is loading. Please wait.

Presentation is loading. Please wait.

M-1 University of Washington Computer Programming I Lecture 13 Pointer Parameters © 2000 UW CSE.

Similar presentations


Presentation on theme: "M-1 University of Washington Computer Programming I Lecture 13 Pointer Parameters © 2000 UW CSE."— Presentation transcript:

1 M-1 University of Washington Computer Programming I Lecture 13 Pointer Parameters © 2000 UW CSE

2 M-2 Overview Concepts this lecture Function parameters Call by value (review) Pointer parameters - call by reference Pointer types & and * operators

3 M-3 Reading 6.1 Output (pointer) Parameters 6.2 Multiple calls to functions with output parameters 6.3 Scope of Names 6.4 Passing Output Parameters to other functions 6.6, 6.7 Debugging and common programming errors

4 M-4 What Does This Print? int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } Output: /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; }

5 M-5 3 8 ? 4 7 ? What Does This Print? int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } Output: /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; }

6 M-6 Function Call Review Remember how function calls are executed: Allocate space for parameters and local variables Initialize parameters by copying argument values Begin execution of the function body Trace carefully to get the right answer

7 M-7 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b Output: move_one x y

8 M-8 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 4 Output: move_one x y

9 M-9 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

10 M-10 4 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

11 M-11 47 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

12 M-12 47X 3 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

13 M-13 47X 3X 8 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

14 M-14 47X 3X 8 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output: move_one x y

15 M-15 47X 3X 8 Trace /* change x and y */ void move_one ( int x, int y ) { x = x - 1; y = y + 1; } int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one(a, b) ; printf(“%d %d”, a,b); return 0; } main a b 47 Output:4 7 move_one x y

16 M-16 Call By Value is Not Enough Once the function parameters are initialized with copies of the arguments, there is no further connection. If the function changes its parameters, it affects the local copy only. To actually change the arguments in the caller, the function needs access to the locations of the arguments, not just their values.

17 M-17 New Type: Pointer A pointer contains a reference to another variable; that is, a pointer contains the memory address of a variable.

18 M-18 New Type: Pointer A pointer contains a reference to another variable; that is, a pointer contains the memory address of a variable. x 32 xp

19 M-19 New Type: Pointer A pointer contains a reference to another variable; that is, a pointer contains the memory address of a variable. xp has type pointer to int (often written: xp has type int*) x 32 xp

20 M-20 x Declaring and Using a Pointer int x; /* declares an int variable */ int * xp; /* declares a pointer to int */ If the address of x is stored in xp, then: *xp = 0; /* Assign integer 0 to x */ *xp = *xp + 1; /* Add 1 to x */ xp

21 M-21 x Declaring and Using a Pointer int x; /* declares an int variable */ int * xp; /* declares a pointer to int */ If the address of x is stored in xp, then: *xp = 0; /* Assign integer 0 to x */ *xp = *xp + 1; /* Add 1 to x */ xp 0

22 M-22 x Declaring and Using a Pointer int x; /* declares an int variable */ int * xp; /* declares a pointer to int */ If the address of x is stored in xp, then: *xp = 0; /* Assign integer 0 to x */ *xp = *xp + 1; /* Add 1 to x */ xp 0 X 1

23 M-23 int main ( void ) { int a, b ; a = 4 ; b = 7 ; move_one( &a, &b ) ; printf(“%d %d”, a, b); return 0; } Pointer Solution to move_one The & operator in front of a variable name creates a pointer to that variable void move _one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; }

24 M-24 Trace main a b Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

25 M-25 Trace main a b 4 Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

26 M-26 Trace main a b 47 Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

27 M-27 Trace main a b 47 move_one x_ptr y_ptr Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

28 M-28 Trace main a b 47 move_one x_ptr y_ptr Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

29 M-29 Trace main a b 47 move_one x_ptr y_ptr Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ;

30 M-30 Trace main a b 47 move_one x_ptr y_ptr Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ; X 3

31 M-31 Trace main a b 47 move_one x_ptr y_ptr Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ; X 3X 8

32 M-32 Trace main a b 47 Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ; X 3X 8

33 M-33 Trace main a b 47 Output: void move_one ( int * x_ptr, int * y_ptr ) { *x_ptr = *x_ptr - 1; *y_ptr = *y_ptr + 1; } a = 4 ; b = 7 ; move_one( &a, &b ) ; X 3X 8 3 8

34 M-34 Aliases *x_ptr and *y_ptr act like aliases for the variables a and b in the function call. When you change * x_ptr and * x_ptr you are changing the values of the caller’s variables. To create these aliases you need to use &a, &b in the call.

35 M-35 Pointer Types Three new types: int * “pointer to int” double *“pointer to double” char *“pointer to char” These are all different - a pointer to a char can’t be used if the function parameter is supposed to be a pointer to an int, for example.

36 M-36 Pointer Operators Two new (unary) operators: &“address of” & can be applied to any variable (or param) *“location pointed to by” * can be applied only to a pointer Keep track of the types: if x has type double, &x has type “pointer to double” or “double *”

37 M-37 Vocabulary Dereferencing or indirection: following a pointer to a memory location The book calls pointer parameters “output parameters”: can be used to provide a value ("input") as usual, and/or store a changed value ("output") Don’t confuse with printed output (printf)

38 M-38 Why Use Pointers? For parameters: in functions that need to change their actual parameters( such as move_one) in functions that need multiple “return” values (such as scanf) These are the only uses in this course

39 M-39 Why Use Pointers? For parameters: in functions that need to change their actual parameters( such as move_one) in functions that need multiple “return” values (such as scanf) These are the only uses in this course In advanced programming, pointers are used to create dynamic data structures.

40 M-40 Now we can make sense out of the punctuation in scanf int x,y,z; scanf(“%d %d %d”, x, y, x+y); NO! scanf(“%d %d”, &x, &y); YES! Why? scanf Revisited

41 M-41 Example: Midpoint Of A Line (x 1, y 1 ) (x 2, y 2 )

42 M-42 Problem: Find the midpoint of a line segment. Algorithm: find the average of the coordinates of the endpoints: xmid = (x1+x2)/2.0; ymid = (y1+y2)/2.0; Example: Midpoint Of A Line (x 1, y 1 ) (x 2, y 2 )

43 M-43 Problem: Find the midpoint of a line segment. Algorithm: find the average of the coordinates of the endpoints: xmid = (x1+x2)/2.0; ymid = (y1+y2)/2.0; Example: Midpoint Of A Line (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, ()

44 M-44 Problem: Find the midpoint of a line segment. Algorithm: find the average of the coordinates of the endpoints: xmid = (x1+x2)/2.0; ymid = (y1+y2)/2.0; Example: Midpoint Of A Line Programming approach: We’d like to package this in a function (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, ()

45 M-45 Function Specification Function specification: given endpoints (x1,y1) and (x2,y2) of a line segment, store the coordinates of the midpoint in (midx, midy) Parameters: x1, y1, x2, y2, midx, and midy (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, ()

46 M-46 The (midx,midy) parameters are being altered, so they need to be pointers Function Specification Function specification: given endpoints (x1,y1) and (x2,y2) of a line segment, store the coordinates of the midpoint in (midx, midy) Parameters: x1, y1, x2, y2, midx, and midy (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, ()

47 M-47 void set_midpoint( double x1, double y1, double x2, double y2, double *  midx_p, double *  midy_p ) { *midx_p = (x1 + x2) / 2.0; *midy_p = (y1 + y2) / 2.0; } Midpoint Function: Code (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, ()

48 M-48 void set_midpoint( double x1, double y1, double x2, double y2, double *  midx_p, double *  midy_p ) { *midx_p = (x1 + x2) / 2.0; *midy_p = (y1 + y2) / 2.0; } Midpoint Function: Code (x 1, y 1 ) (x 2, y 2 ) (x 1 +x 2 ) (y 1 +y 2 ) 2, () double x_end, y_end, mx, my; x_end = 250.0; y_end = 100.0; set_midpoint(0.0, 0.0, x_end, y_end, &mx, &my);

49 M-49 Trace main x_endy_endmx my

50 M-50 Trace main x_endy_endmx my 250.0

51 M-51 Trace main x_endy_endmx my 250.0100.0

52 M-52 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0

53 M-53 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0

54 M-54 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0

55 M-55 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0

56 M-56 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0100.0

57 M-57 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0100.0

58 M-58 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0100.0

59 M-59 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0100.0 125.0

60 M-60 Trace set_midpoint x1y1x2y2midx_pmidy_p main x_endy_endmx my 250.0100.0 0.0 250.0100.0 125.0 50.0

61 M-61 Example: Gameboard Coordinates Board Coordinates row, column (used by players) Screen Coordinates x, y (used by graphics package) (x,y) Problem: convert (x,y) to (row,col)

62 M-62 Coordinate Conversion: Analysis row col (LL_X, LL_Y) (x,y) x – LL_X y – LL_Y SQUARE_SIZE 0123401234 4321043210

63 M-63 void screen_to_board ( int screenx, int screeny, /* coords on screen */ int *  row_p, int *  col_p)/* position on board */ { Coordinate Conversion: Code

64 M-64 void screen_to_board ( int screenx, int screeny, /* coords on screen */ int *  row_p, int *  col_p)/* position on board */ { Coordinate Conversion: Code #define LL_X 40 #define LL_Y 20 #define SQUARE_SIZE 10

65 M-65 void screen_to_board ( int screenx, int screeny, /* coords on screen */ int *  row_p, int *  col_p)/* position on board */ { Coordinate Conversion: Code #define LL_X 40 #define LL_Y 20 #define SQUARE_SIZE 10 *row_p = (screeny - LL_Y) / SQUARE_SIZE; *col_p = (screenx - LL_X) / SQUARE_SIZE; }

66 M-66 void screen_to_board ( int screenx, int screeny, /* coords on screen */ int *  row_p, int *  col_p)/* position on board */ { Coordinate Conversion: Code #define LL_X 40 #define LL_Y 20 #define SQUARE_SIZE 10 *row_p = (screeny - LL_Y) / SQUARE_SIZE; *col_p = (screenx - LL_X) / SQUARE_SIZE; }

67 M-67 void screen_to_board ( int screenx, int screeny, /* coords on screen */ int *  row_p, int *  col_p)/* position on board */ { Coordinate Conversion: Code #define LL_X 40 #define LL_Y 20 #define SQUARE_SIZE 10 screen_to_board (x, y, &row, &col); *row_p = (screeny - LL_Y) / SQUARE_SIZE; *col_p = (screenx - LL_X) / SQUARE_SIZE; }

68 M-68 Problem: Reorder Suppose we want a function to arrange its two parameters in numeric order. Example: 12, 3 need to be reordered as 3, 12 -1, 5 is already in order (no change needed) Parameter analysis: since we might change the parameter values, they have to be pointers This example is a small version of a very important problem in computer science, called “sorting”

69 M-69 Code for Reorder /* ensure *p1 >= *p2, interchanging values if needed */ void reorder(int *p1, int *p2) { int tmp; if (*p1 < *p2) { tmp = *p1; *p1 = *p2; *p2 = tmp; }

70 M-70 swap as a Function /* interchange *p and *q */ void swap ( int *  p, int *  q) { int temp ; temp= *p ; *p= *q ; *q= temp ; } int a, b ; a = 4; b = 7;... swap (&a, &b) ;

71 M-71 Reorder Implemented using swap /* ensure *p1 >= *p2, interchanging values if needed */ void reorder(int *p1, int *p2) { if (*p1 < *p2) swap( ____, _____ ); } What goes in the blanks?

72 M-72 Pointer Parameters (Wrong!) Normally, if a pointer is expected, we create one using &: /* ensure *p1 >= *p2, interchanging values if needed */ void reorder(int *p1, int *p2) { if (*p1 < *p2) swap( &p1, &p2 ); } But that can’t be right - p1 and p2 are already pointers! What are the types of expressions &p1 and &p2?

73 M-73 Pointer Parameters (Right!) Right answer: if the types match (int *), we use the pointers directly /* ensure *p1 >= *p2, interchanging values if needed */ void reorder(int *p1, int *p2) { if (*p1 < *p2) swap( p1, p2 ); }

74 M-74 Trace main xy void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y);

75 M-75 Trace main xy void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 17

76 M-76 Trace main xy void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

77 M-77 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

78 M-78 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

79 M-79 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

80 M-80 swap pq temp Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

81 M-81 swap pq temp Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

82 M-82 swap pq temp Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

83 M-83 swap pq temp 17 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742

84 M-84 swap pq temp 17 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742 X 42

85 M-85 swap pq temp 17 Trace main xy reorder p1 p2 void swap(int *p, int *q){ … } void reorder(int*p1, int*p2) { if (*p1 < *p2) swap(p1,p2); } int x, y; x = 17; y = 42; reorder(&x,&y); 1742 X 42 X 17

86 M-86 Pointers and scanf Once More

87 M-87 Pointers and scanf Once More Problem: User is supposed to enter ‘y’ or ‘n’, and no other answer is acceptable. Read until user enters ‘y’ or ‘n’ and return input void Read_y_or_n(char *chp) {... } int main(void) { char ch; Read_y_or_n(&ch);...

88 M-88 Pointers and scanf Once More /* read until user enters ‘y’ or ‘n’ and return input */ void Read_y_or_n(char *chp) { printf(“Enter an ‘y’ or a ‘n’.\n”); scanf(“%c”, chp); while ( *chp != ‘y’ && *chp != ‘n’) { printf ("\nSorry, try again\n"); scanf(“%c”, chp); } int main(void) { char ch; Read_y_or_n(&ch);... No ‘&’ !

89 M-89 Wrapping Up Pointers are needed when the parameter value may be changed & creates a pointer * dereferences the value pointed to This completes the technical discussion of functions in C for this course Learning how to design and use functions will be a continuing concern in the course


Download ppt "M-1 University of Washington Computer Programming I Lecture 13 Pointer Parameters © 2000 UW CSE."

Similar presentations


Ads by Google