Download presentation
Presentation is loading. Please wait.
Published byAbraham Goodman Modified over 9 years ago
2
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill Building 10:00 - 10:50 Mondays, Wednesdays & Fridays. 9/11/15
3
Everyone will want to be enrolled in one of the lab sessions Lab continue next week, Project 1 should be collected
4
Homework Assignment No new homework assignments (Time to get caught up if you’ve fallen behind )
5
More information on registering clickers coming soon
6
Schedule of readings Before next exam (September 25 th ) Please read chapters 1 - 5 in OpenStax textbook Please read Appendix D, E & F online On syllabus this is referred to as online readings 1, 2 & 3 Please read Chapters 1, 5, 6 and 13 in Plous Chapter 1: Selective Perception Chapter 5: Plasticity Chapter 6: Effects of Question Wording and Framing Chapter 13: Anchoring and Adjustment
7
Overview Frequency distributions The normal curve Mean, Median, Mode, Trimmed Mean Challenge yourself as we work through characteristics of distributions to try to categorize each concept as a measure of 1) central tendency 2) dispersion or 3) shape Skewed right, skewed left unimodal, bimodal, symmetric
8
A little more about frequency distributions An example of a normal distribution
9
A little more about frequency distributions An example of a normal distribution
10
A little more about frequency distributions An example of a normal distribution
11
A little more about frequency distributions An example of a normal distribution
12
A little more about frequency distributions An example of a normal distribution
13
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Normal distribution In a normal distribution: mode = mean = median In all distributions: mode = tallest point median = middle score mean = balance point
14
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Positively skewed distribution In a positively skewed distribution: mode < median < mean In all distributions: mode = tallest point median = middle score mean = balance point Note: mean is most affected by outliers or skewed distributions
15
Measure of central tendency: describes how scores tend to cluster toward the center of the distribution Negatively skewed distribution In a negatively skewed distribution: mean < median < mode In all distributions: mode = tallest point median = middle score mean = balance point Note: mean is most affected by outliers or skewed distributions
16
Mode: The value of the most frequent observation Bimodal distribution: Distribution with two most frequent observations (2 peaks) Example: Ian coaches two boys baseball teams. One team is made up of 10-year-olds and the other is made up of 16-year-olds. When he measured the height of all of his players he found a bimodal distribution
17
Overview Frequency distributions The normal curve Mean, Median, Mode, Trimmed Mean Standard deviation, Variance, Range Mean Absolute Deviation Skewed right, skewed left unimodal, bimodal, symmetric
18
Frequency distributions The normal curve
19
Variability Some distributions are more variable than others 6’ 7’ 5’ 5’6” 6’6” Let’s say this is our distribution of heights of men on U of A baseball team Mean is 6 feet tall 6’ 7’ 5’ 5’6” 6’6” 6’ 7’ 5’ 5’6” 6’6” What might this be?
20
6’ 7’ 5’ 5’6” 6’6” 6’ 7’ 5’ 5’6” 6’6” 6’ 7’ 5’ 5’6” 6’6” Dispersion: Variability Some distributions are more variable than others Range: The difference between the largest and smallest observations Range for distribution A? Range for distribution B? Range for distribution C? A B C The larger the variability the wider the curve tends to be The smaller the variability the narrower the curve tends to be
21
Range: The difference between the largest and smallest scores 84” – 70” = 14” Tallest player = 84” (same as 7’0”) (Kaleb Tarczewski and Dusan Ristic) Shortest player = 70” (same as 5’10”) (Parker Jackson-Cartwritght) Wildcats Basketball team: Range is 14” Fun fact: Mean is 78 x max - x min = Range
22
Range: The difference between the largest and smallest score 77” – 69” = 8” Tallest player = 77” (same as 6’5”) (Austin Schnabel) Shortest player = 69” (same as 5’9”) (Justin Behnke and Ernie DeLaTrinidad ) Wildcats Baseball team: Range is 8” (77” – 69” ) Fun fact: Mean is 72 x max - x min = Range Please note: No reference is made to numbers between the min and max Baseball
23
Variability Standard deviation: The average amount by which observations deviate on either side of their mean Mean is 6’ Generally, (on average) how far away is each score from the mean?
24
Let’s build it up again… U of A Baseball team Diallo Diallo is 6’0” Diallo is 0” Deviation scores 6’0” – 6’0” = 0 5’8” 5’10” 6’0” 6’2” 6’4” Diallo’s deviation score is 0
25
Preston Preston is 6’2” 6’2” – 6’0” = 2 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Preston is 2” Deviation scores Preston’s deviation score is 2” Diallo is 6’0” Diallo’s deviation score is 0 Let’s build it up again… U of A Baseball team
26
Mike Hunter Mike is 5’8” Hunter is 5’10” 5’8” – 6’0” = -4 5’10” – 6’0” = -2 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Preston is 2” Deviation scores Preston is 6’2” Preston’s deviation score is 2” Diallo is 6’0” Diallo’s deviation score is 0 Mike’s deviation score is -4” Hunter’s deviation score is -2” Let’s build it up again… U of A Baseball team
27
David Shea Shea is 6’4” David is 6’ 0” 6’4” – 6’0” = 4 6’ 0” – 6’0” = 0 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores Preston’s deviation score is 2” Diallo’s deviation score is 0 Mike’s deviation score is -4” Hunter’s deviation score is -2” Shea’s deviation score is 4” David’s deviation score is 0 Let’s build it up again… U of A Baseball team
28
David Shea 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores Preston’s deviation score is 2” Diallo’s deviation score is 0 Mike’s deviation score is -4” Hunter’s deviation score is -2” Shea’s deviation score is 4” David’s deviation score is 0” Let’s build it up again… U of A Baseball team
29
5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores Let’s build it up again… U of A Baseball team
30
Standard deviation: The average amount by which observations deviate on either side of their mean 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores
31
Standard deviation: The average amount by which observations deviate on either side of their mean 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores
32
Standard deviation: The average amount by which observations deviate on either side of their mean 5’8” 5’10” 6’0” 6’2” 6’4” Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores
33
How do we find each deviation score? 5’8” - 6’0” = - 4” 5’9” - 6’0” = - 3” 5’10’ - 6’0” = - 2” 5’11” - 6’0” = - 1” 6’0” - 6’0 = 0 6’1” - 6’0” = + 1” 6’2” - 6’0” = + 2” 6’3” - 6’0” = + 3” 6’4” - 6’0” = + 4” Deviation scores: The amount by which observations deviate on either side of their mean (x - µ ) = ? Diallo Mike Hunter Preston Mean Mike Shea Preston Diallo How far away is each score from the mean? ( x - µ ) Diallo Mike Hunter Preston Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores ( x - µ ) Find distance of each person from the mean (subtract their score from mean) ( x - µ ) Deviation score
34
5’8” - 6’0” = - 4” 5’9” - 6’0” = - 3” 5’10’ - 6’0” = - 2” 5’11” - 6’0” = - 1” 6’0” - 6’0 = 0 6’1” - 6’0” = + 1” 6’2” - 6’0” = + 2” 6’3” - 6’0” = + 3” 6’4” - 6’0” = + 4” Deviation scores: The amount by which observations deviate on either side of their mean (x - µ ) = ? Mean Mike Shea Preston Diallo How far away is each score from the mean? Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores ( x - µ ) Based on difference from the mean Remember It’s relative to the mean ( x - µ ) Deviation score
35
How do we find the average height? 5’8” - 6’0” = - 4” 5’9” - 6’0” = - 3” 5’10’ - 6’0” = - 2” 5’11” - 6’0” = - 1” 6’0” - 6’0 = 0 6’1” - 6’0” = + 1” 6’2” - 6’0” = + 2” 6’3” - 6’0” = + 3” 6’4” - 6’0” = + 4” Standard deviation: The average amount by which observations deviate on either side of their mean Σ(x - x) = 0 Σ (x - µ ) = ? Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores Σ(x - µ ) = 0 = average height N ΣxΣx = average deviation Σ(x - µ ) N How do we find the average spread? Mean Mike Shea Preston Diallo How far away is each score from the mean? ( x - µ ) Add up Deviation scores
36
5’8” - 6’0” = - 4” 5’9” - 6’0” = - 3” 5’10’ - 6’0” = - 2” 5’11” - 6’0” = - 1” 6’0” - 6’0 = 0 6’1” - 6’0” = + 1” 6’2” - 6’0” = + 2” 6’3” - 6’0” = + 3” 6’4” - 6’0” = + 4” Standard deviation: The average amount by which observations deviate on either side of their mean Σ(x - x) = 0 Σ (x - µ ) = ? Diallo is 0” Mike is -4” Hunter is -2 Shea is 4 David is 0” Preston is 2” Deviation scores Σ(x - µ ) = 0 Mean Mike Shea Preston Diallo How far away is each score from the mean? ( x - µ ) Big problem Σ(x - x) 2 Square the deviations Σ(x - µ ) 2 N 2
37
Standard deviation: The average amount by which observations deviate on either side of their mean These would be helpful to know by heart – please memorize these formula
38
Standard deviation: The average amount by which observations deviate on either side of their mean What do these two formula have in common?
39
Standard deviation: The average amount by which observations deviate on either side of their mean What do these two formula have in common?
40
Standard deviation: The average amount by which observations deviate on either side of their mean How do these formula differ? “n-1” is Degrees of Freedom”
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.