Download presentation
Presentation is loading. Please wait.
Published byNatalie Bell Modified over 9 years ago
1
HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope
2
Gus Sinnis Los Alamos National Laboratory VHE Astrophysics Energy range 10 GeV – 10 TeV Non thermal processes in the universe Particle acceleration Physics of extreme objects –Supernova remnants –Active galactic nuclei –Gamma ray bursts Fundamental Physics –Quantum gravity –Extragalactic background light –Dark Matter Unexplored energy range –Discoveries likely –New types of sources revealed
3
Gus Sinnis Los Alamos National Laboratory Active Galactic Nuclei Particle Jet Accretion Disk/torus Supermassive Black Hole 10 8-10 M sun Rotating magnetic field converts rotational energy of hole into kinetic energy. Shocks propagate along jets and accelerate particles. ~50 10 48 ergs/sec Highly variable in VHE band
4
Gus Sinnis Los Alamos National Laboratory Mrk 501 Longterm Variability
5
Gus Sinnis Los Alamos National Laboratory AGN Spectra
6
Gus Sinnis Los Alamos National Laboratory Gamma-Ray Bursts Discovered in 1960’s – VELA spy satellites at Los Alamos Intense bursts of -rays coming from seemingly random directions Last from milliseconds to 100’s of seconds Over >2500 observed to date Cosmological origin Most energetic phenomena known 10 ~54 ergs! Counterparts in other wavelengths (optical, radio, GeV, TeV?)
7
Gus Sinnis Los Alamos National Laboratory Gamma-Ray Burst Properties GRB Positions in Galactic Coordinates Spatial Distribution Duration Distribution
8
Gus Sinnis Los Alamos National Laboratory GRB Profiles 156040 2015020 8055 100400.5 Counts/second Seconds
9
Gus Sinnis Los Alamos National Laboratory GRBs: High Energy Emission BATSE is sensitive to 20 keV- 2 MeV photons EGRET is sensitive to 30 MeV – 30 GeV photons EGRET observed 6 GRBs with spark chambers 18 GeV photon
10
Gus Sinnis Los Alamos National Laboratory GRB Models Central Engine: hypernovae (death of a very massive star) neutron star - neutron star merger black hole - neutron star mergers Emission Spectra: Fireball: internal or external shocks convert energy into electromagnetic radiation.
11
Gus Sinnis Los Alamos National Laboratory Quantum Gravity Quantum gravity may violate Lorentz invariance Most theories predict energy dependent speed of light –Interactions with Planck mass particles distort spacetime: yielding larger distances for HE gammas –Planck scale vacuum fluctuations probed by HE gammas Dynamics of the theory unknown Explore possible modifications to dispersion relation (Amelino-Camelia et al.) For photons this leads to an energy dependent velocity
12
Gus Sinnis Los Alamos National Laboratory Quantum Gravity & GRBs Figure of Merit: For E=1 TeV: E/E QG = 10 -16 Distant sources of HE -rays can amplify this effect A single detection allows one to set a compelling limit To prove an effect from QG requires multiple GRBs at different redshifts GLAST E = 30 GeV t = 1 sec z = 1 E probe = 1.2 E Planck Milagro E = 300 GeV t = 1 sec z = 0.2 E probe = 2.5 E Planck HAWC E = 50 GeV t = 1 sec z = 1 E probe = 2 E Planck
13
Gus Sinnis Los Alamos National Laboratory Milagrito Example Cross correlation between TeV and sub-MeV lightcurves peaks at a lag of 1 s. Assuming E obs = 650 GeV, t = 4 s and z=0.1, we can obtain a constraint on E QG which is a factor of ~70 better than previous limits (Biller 1999).
14
Gus Sinnis Los Alamos National Laboratory Absorption of TeV Photons e+e+ e-e- ~eV ~TeV
15
Gus Sinnis Los Alamos National Laboratory The First Unidentified TeV Source HEGRA: Deep observation 113 hours of observation (3 years) 4.6 significance 30 mCrab strength Centered on Cygnus OB2 (dense region of young, massive stars) Possibly an extended source
16
Gus Sinnis Los Alamos National Laboratory TeV NameSourceTypeDate/GroupEGRET CatalogGrade TeV 0047−2518NGC 253Starburst2003/CangaroonoB TeV 0219+42483C66ABlazar1998/CrimeayesC- TeV 0535+2200Crab NebulaSNR1989/WhippleyesA (Milagro) TeV 0834−4500VelaSNR1997/CangaroonoC TeV 1121−6037Cen X-3Binary1999/DurhamyesC TeV 1104+3813Mrk 421Blazar1992/WhippleyesA (Milagro) TeV 1231+1224M87Radio Galaxy2003/HEGRAnoC TeV 1429+4240H1426+428Blazar2002/WhipplenoA TeV 1503−4157SN1006SNR1997/CangaroonoB TeV 1654+3946Mrk 501Blazar1995/WhipplenoA (Milagro) TeV 1710−4429PSR 1706−44SNR1995/CangaroonoA TeV 1712−3932RXJ1713.7−39SNR1999/CangaroonoB+ TeV 2000+65091ES1959+650Blazar1999/TAnoA TeV 2032+4131CygOB2OB assoc.2002/HEGRAyes†B TeV 2159−3014PKS2155−304Blazar1999/DurhamyesA TeV 2203+4217BL LacertaeBlazar2001/CrimeayesC TeV 2323+5849Cas ASNR1999/HEGRAnoB TeV 2347+51421ES2344+514Blazar1997/WhipplenoA Galactic PlaneMilky WayDiffuse2004/MilagroyesB (Milagro) † CygOB2 lies within the 95% error ellipse of the EGRET source 3EG J0233+4118 8 verified (A) sources, 5 B sources, 5 C sources 10 extragalactic source, 8 galactic Horan & Weekes 2003
17
Gus Sinnis Los Alamos National Laboratory VHE Sky Map Horan & Weekes 2003
18
Gus Sinnis Los Alamos National Laboratory EGRET Sky Map 270 sources (150 unidentified)
19
Gus Sinnis Los Alamos National Laboratory Milagro TeV Sky Map Right Ascension Declination Crab Mrk 421
20
Gus Sinnis Los Alamos National Laboratory Current Status of VHE Astronomy Only 8 confirmed sources (89, 92, 2x95, 97, 2x99, 2002) Lack of sources due to: –Small field of view of ACTs –Low sensitivity of all-sky instruments Small source counts lead to poor understanding of VHE sources VHE GRBs inconclusive (Milagrito) HAWC – high sensitivity over entire sky –Detect many sources –Monitor transient sources –Discover VHE emission from GRBs –Limit/Measure effects of quantum gravity
21
Gus Sinnis Los Alamos National Laboratory HAWC: High Altitude Water Cherenkov Telescope
22
Gus Sinnis Los Alamos National Laboratory HAWC Performance Requirements Energy Threshold ~20 GeV GRBs visible to redshift ~1 Near known GRB energy AGN to redshift ~0.3 Large fov (~2 sr) / High duty cycle (~100%) GRBs prompt emission AGN transients Large Area / Good Background Rejection –High signal rate –Ability to detect Crab Nebula in single transit Moderate Energy Resolution (~40%) –Measure GRB spectra –Measure AGN flaring spectra
23
Gus Sinnis Los Alamos National Laboratory Effect of Altitude Approximation B Low Energy Threshold Requires High Altitude
24
Gus Sinnis Los Alamos National Laboratory EAS Particle Content Ngammas Nelectrons Primary Energy (GeV) Low Energy Threshold Requires Detection of Gamma Rays in EAS
25
Gus Sinnis Los Alamos National Laboratory Detecting Extensive Air Showers Low energy threshold (300 GeV) Good background rejection (99.7%) Small field of view (2 msr) Small duty cycle (< 10 %) Air Cherenkov TelescopeExtensive Air Shower Array High energy threshold (100 TeV) Moderate background rejection (50%) Large field of view (~2 sr) High duty cycle (>90%)
26
Gus Sinnis Los Alamos National Laboratory HAWC Design 200m x 200m water Cherenkov detector Two layers of 8” PMTs on a 3 meter grid –Top layer under 1.5m water (trigger & angle) –Bottom layer under 6m water (energy & particle ID) Two altitudes investigated –4500 m (Tibet, China) –5200 m (Altacama desert Chile) 7 meters e 200 meters
27
Gus Sinnis Los Alamos National Laboratory Effective Area vs. Energy
28
Gus Sinnis Los Alamos National Laboratory Event Reconstruction
29
Gus Sinnis Los Alamos National Laboratory Event Reconstruction
30
Gus Sinnis Los Alamos National Laboratory Angular Resolution
31
Gus Sinnis Los Alamos National Laboratory CORSIKA: Energy Resolution
32
Gus Sinnis Los Alamos National Laboratory CORSIKA: Energy Resolution
33
Gus Sinnis Los Alamos National Laboratory CORSIKA: Energy Resolution
34
Gus Sinnis Los Alamos National Laboratory Energy Distribution of Fit Events Median Energy 180 GeV (Milagro ~3 TeV)
35
Gus Sinnis Los Alamos National Laboratory Gammas Protons Background Rejection Bottom Layer 30 GeV70 GeV230 GeV 20 GeV70 GeV 270 GeV
36
Gus Sinnis Los Alamos National Laboratory Background Rejection Uniformity Parameter nTop/cxPE > 4.3 Reject 70% of protons Accept 87% of gammas 1.6x improvement in sensitivity Gammas Protons
37
Gus Sinnis Los Alamos National Laboratory D.C. Sensitivity: Galactic Sources Crab Spectrum: dN/dE = 3.2x10 -7 E -2.49 –Milagro 0.002 (0.001) Hz raw (cut) rate –HAWC 0.220 (0.19) Hz raw (cut) rate –Whipple 0.025 Hz –Veritas 0.5 (.12) Hz raw (cut) rate Background rate 80 (24) Hz raw (cut) 4 /sqrt(day) raw data 6 /sqrt(day) cut data –120 /sqrt(year) 40 mCrab sensitivity (all sky) in one year –Whipple: 140 mCrab per source –VERITAS: 7 mCrab per source (15 sources/year)
38
Gus Sinnis Los Alamos National Laboratory Transient Sensitivity Mrk flares
39
Gus Sinnis Los Alamos National Laboratory Effect of EBL on Distant Sources z = 0.03 z = 0.1 z = 0.2 z = 0.3 z = 0.0
40
Gus Sinnis Los Alamos National Laboratory Energy Distribution After EBL
41
Gus Sinnis Los Alamos National Laboratory AGN Sensitivity 1 Year
42
Gus Sinnis Los Alamos National Laboratory Gamma Ray Burst Sensitivity 50 events
43
Gus Sinnis Los Alamos National Laboratory Point Source Sensitivity
44
Gus Sinnis Los Alamos National Laboratory Survey Mode Sensitivity
45
Gus Sinnis Los Alamos National Laboratory Conclusions A large area, high altitude all sky VHE detector will: –Detect the Crab in a single transit –Detect AGN to z = 0.3 –Observe 15 minute flaring from AGN –Detect GRB emission at ~50 GeV / redshift ~1 –Detect 6-10 GRBs/year (EGRET 6 in 9 years) –Monitor GLAST sources –Have excellent discovery potential Continuing work –Improve background rejection & event reconstruction Increase sensitivity by ~50% - 100%? Develop energy estimator –Detailed detector design (electronics, DAQ, infrastructure) –Reliable cost estimate needed (~$30M???) –Site selection (Chile, Tibet, White Mountain) Time Line –2004 R&D proposal to NSF –2006 full proposal to NSF –2007-2010 construction
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.