Download presentation
Presentation is loading. Please wait.
Published byBrandon Callahan Modified over 10 years ago
1
Compression Scenarios for the European XFEL Charge and Bunch Length Scope Igor Zagorodnov 1st Meeting of the European XFEL Accelerator Consortium DESY, MPY 14. April 2012
2
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 2 Inhalt Analytical and Numerical Approaches Compression Scenarios for Different Charges Strong Compression Summary
3
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 3 Analytical and Numerical Approaches Layout
4
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 4 Analytical and Numerical Approaches Working points (11 macro-parameters) What is the optimal choice? Zagorodnov I., Dohlus M., A Semi-Analytical Modelling of Multistage Bunch Compression with Collective Effects, Phys. Rev. ST Accel. Beams, 2011.
5
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 5 Analytical and Numerical Approaches Choosing of machine parameters very strong compression at the bunch head (spike)
6
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 6 Analytical and Numerical Approaches ~ 1.5 kA ~2.5 kA slice emittance > 2 m slice emittance ~ 0.3 - 1 m Q=1 nC Q=0.5 nC Rollover Compression vs. Linearized (FLASH)
7
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 7 Analytical and Numerical Approaches Q=1 nC
8
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 8 Analytical and Numerical Approaches Analytical solution without self-fields Solution with self-fields nonlinear operator (tracking with self-fields) numerical tracking analytical correction of RF parameters residual in macroscopic parameters Zagorodnov I., Dohlus M., A Semi-Analytical Modelling of Multistage Bunch Compression with Collective Effects, Phys. Rev. ST Accel. Beams, 2011.
9
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 9 Analytical and Numerical Approaches Beam dynamics simulation ASTRA ( tracking with 3D space charge, DESY, K. Flötmann) W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003) W3 - ACC39 wake (TESLA Report 2004-01, DESY, 2004) TM - transverse matching to the design optics W3W3 W 1 TM 4W 1 TM 64W 1 12W 1 TM Full 3D simulation method (200 CPU, ~10 hours) CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg)
10
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 10 Compression for Different Charges Q=1 nC Phase space Current, emittance, energy spread bunch head
11
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 11 Compression for Different Charges Phase space Current, emittance, energy spread bunch head Q=250 pC
12
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 12 Compression for Different Charges Current, emittance, energy spread Phase space Q=20 pC
13
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 13 Compression for Different Charges ParameterUnit Bunch chargenC10.50.250.10.02 Peak current (gun)A432413.55.71.2 Bunch length (gun, FWHM)ps25222017 Slice emittance (gun) m 0.80.50.30.210.09 Projected emittance (gun) m 10.70.60.30.1 Compression1142333638773833 Peak currentkA4.95.64.954.6 Bunch length (FWHM)fs1787239122.2 Slice emittance m 10.70.50.30.17 Projected emittance m 3.52.21.50.840.26 Slice energy spread (laser heater off) MeV0.450.440.6 0.8 Beam parameters from S2E simulations
14
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 14 Compression for Different Charges Radiation Q=1nC. SASE Genesis ALICE Genesis ALICE Zagorodnov I., Dohlus M., Numerical FEL studies with a new code ALICE, in Proceedings of FEL09, Liverpool, 2009.
15
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 15 Compression for Different Charges Radiation energy statistics (1-25-120 runs) 250 pC 1 nC Mean energy 20 pC Radiation pulse width (RMS) Charge, nC10.250.02 Mean radiation energy, mJ1-41-20.1-0.4 Pulse radiation width (FWHM), fs25-5010-201-2 250 pC 1 nC 20 pC
16
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 16 Compression for Different Charges Bunch charge, nC10.250.02 Wavelength, nm0.1 Beam energy, GeV14 Peak current, kA~ 5 Slice emmitance,mm-mrad 10.50.2 Saturation length, m856045 Energy in the rad. pulse, mJ1-41-20.1-0.4 Radiation pulse duration FWHM, fs25-5010-201-2 Averaged peak power, GW10-5010-10050-150 Spectrum width, %0.15-0.30.18-0.5 Radiation Properties from S2E
17
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 17 Strong Compression Q=1 nC, I=10kA Phase space Current, emittance, energy spread
18
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 18 Strong Compression ParameterUnit Bunch chargenC1 Peak current (gun)A43 Compression116228 Peak currentkA59.8 Bunch length (FWHM)fs17875 Slice emittance m 11 Projected emittance m 3.58 Slice energy spread (laser heater off) MeV0.451 Q=1 nC
19
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 19 Strong Compression for 250 pC R 56,3 = -20 mm R 56,3 = -23.8 mm
20
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 20 Strong Compression for 250 pC Momentum compaction factor in BC 1 R 56,1, [mm] Compr. in BC 1 C 1 Momentum compaction factor in BC 2 R 56,2, [mm] Compr. in BC 2 C 2 Momentum compaction factor in BC 3 R 56,3, [mm] Total compr. C Second derivative (C -1 ) '', [m -2 ] -783.5-508 -20,…,-24 3851000 Macro-parameters
21
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 21 Strong Compression for 250 pC R 56,3 =-20mm Phase space Current, emittance, energy spread
22
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 22 Strong Compression for 250 pC R 56,3 =-21 mm Phase space Current, emittance, energy spread
23
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 23 Strong Compression for 250 pC R 56,3 =-21.9 mm Phase space Current, emittance, energy spread
24
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 24 Strong Compression for 250 pC R 56,3 =-22.6 mm Phase space Current, emittance, energy spread
25
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 25 Strong Compression for 250 pC R 56,3 =-22.6 mm (70% of particles) Phase space Current, emittance, energy spread
26
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 26 Strong Compression for 250 pC R 56,3 =-23.2 mm (70% of particles) Phase space Current, emittance, energy spread
27
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 27 Strong Compression for 250 pC Beam core parameters vs. R 56
28
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 28 Strong Compression for 250 pC Beam core parameters vs. R 56
29
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 29 Strong Compression for 250 pC Radiation energy vs. R 56 (with und. wake and taper)
30
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 30 Strong Compression (SLAC) Q=20 pC
31
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 31 Strong Compression for 250 pC Radiation energy vs. compression rate
32
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 32 Strong Compression for 250 pC Radiation energy vs. compression rate
33
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 33 Strong Compression for 250 pC Radiation power vs. compression rate
34
Igor Zagorodnov| 1st Meeting of EXFEL Accelerator Consortium | 17. April 2012 | Seite 34 Summary Bunches with charge 20-1000 pC can be compressed to 5 kA and higher Radiation energy drops down at full compression Overcompression scenario can be used Acknowledgements to M.Dohlus and T.Limberg for many useful discussions
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.