Presentation is loading. Please wait.

Presentation is loading. Please wait.

COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.

Similar presentations


Presentation on theme: "COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA."— Presentation transcript:

1 COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA

2 COMET Experiment Mu-e conversion search – Charged lepton flavor violation – GUT, ν mass origin COMET Target group – RAL Chris Densham Peter Loveridge Tristan Davenne – KEK Makoto Yoshida Satoshi Mihara Proton beam Production target Production target πμπμ Muon stopping target Electron spectrometer proton pulse prompt background muon decay

3 COMET Staging Approach Phase I Phase II Phase I – Beam background study and achieving an intermediate sensitivity of <10 -14 8GeV, ~3.2kW, ~3 weeks of DAQ 2016-2017 Phase II – 8GeV, ~56 kW, 1 year DAQ to achieve the COMET final goal of < 10 -16 sensitivity Starts around 2019-2020 μ-μ- μ+μ+ 104MeV/c Phase I 0.03 BG expected in 1.5x10 6 sec running time 10/Sep/2013Satoshi MIHARA, PSI20133

4 Beam Power Phase I – 8 GeV, 3.2 kW – # of protons per MR bunch equivalent to that of 3.2x(30/8)x2 = 24kW operation at 30GeV Phase II – 8 GeV, 56 kW – Faster repetition cycle is necessary (1.47 sec)

5 Production Target Phase I (Radiation cooling) – Graphite Refractory material and so is tolerant to high temperature operation Experience in T2K – Tungsten Larger muon yield Radiation cooling may be OK but need careful assessment Phase II (Active cooling) – Tungsten Bad chemistry between tungsten and water Helium cooling instead of water cooling

6

7

8

9

10 Radiation cooled tungsten (Phase I) Values used in simulations (not necessarily COMET baseline) Beam power3.2 kW Target heat load194 W Target radius4 mm Beam radius rms1 mm Tungsten emissivity 0.3 Temperature Max = 1298°C Von Mises stress Max = 3.56 MPa

11 Phase II: How about helium cooling? Values used in simulations (preliminary) Beam power56 kW Target heat load3.4 kW Target radius4 mm Beam size rms1 mm Helium annulus thickness 1 mm Helium inlet pressure8 bar Helium mass flow5 g/s Temperature Max = 921°C Von Mises stress Max = 63 MPa NB effect of beam cycle not included: 1/3 duty factor -> x3 higher stress!

12 Tungsten yield strength CW operation

13 Outline layout for annular cooling of target Coolant streamlines

14 Effect of off-centre beam Temperature profile for beam displacement of 2σ Deformation from beam displacement of 2σ Maximum displacement = 0.07 mm

15

16

17

18 温度分布(空冷) ・銅の外周 (φ1200) : 5 W/m 2 K@30 ℃ ・タングステンコアの外周 (φ700): 5 W/m 2 K@30 ℃ - 冷却配管は Phase-I で内蔵させる。 冷却管内を Blower で空気を循環させたら? 冷却管内を Blower で空気を循環させたら? 許容できる!

19 温度分布(水冷、 Phase-II ) ・シールド中心部: 38000 ℃  75 ℃ ・シールド外周部: 34000 ℃  42 ℃ ・真空容器: 30000 ℃  42 ℃ 冷却なし水冷 許容できる ? ・銅の外周 (φ1200) : 1000 W/m 2 K@35 ℃ ・タングステンコアの外周 (φ700): 250 W/m 2 K@35 ℃


Download ppt "COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA."

Similar presentations


Ads by Google