Download presentation
Presentation is loading. Please wait.
Published byScarlett Blake Modified over 9 years ago
1
ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu
2
VM Ayres, ECE802-604, F13 Lecture 26, 02 Dec 13 Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp 2 : electronic structure 2DEG: E-k relationship/graph for graphene and transport 1DEG: E-k relationship/graph for CNTs and transport Examples Molecular Electronics R. Saito, G. Dresselhaus and M.S. Dresselhaus Physical Properties of Carbon Nanotubes
3
VM Ayres, ECE802-604, F13 CNT Unit cell in green: C h = n a 1 + m a 2 |C h | = a√n 2 + m 2 + mn d t = |C h |/ cos = a 1 C h |a 1 | |C h | T = t 1 a 1 + t 2 a 2 t 1 = (2m + n)/ d R t 2 = - (2n + m) /d R d R = the greatest common divisor of 2m + n and 2n+ m |T| = √ 3 (m 2 + n 2 +nm)/d R = √ 3|C h |/d R N = | T X C h | | a 1 x a 2 | = 2(m 2 + n 2 +nm)/d R
4
VM Ayres, ECE802-604, F13 Example: is C h for the armchair CNT at right angles to C h for the zigzag CNT?
5
VM Ayres, ECE802-604, F13 Example: is C h for the armchair CNT at right angles to C h for the zigzag CNT? Answer: No. It’s at an angle. HW: evaluate the angle.
6
VM Ayres, ECE802-604, F13 a1a1 If this is the specified unit vector system, then armchair C h is at the chiral angle and zigzag: C h in a 1 direction.
7
VM Ayres, ECE802-604, F13 Example: for the paper cutout, is C h for the armchair CNT at right angles to C h for the zigzag CNT?
8
VM Ayres, ECE802-604, F13 Example: for the paper cutout, is C h for the armchair CNT at right angles to C h for the zigzag CNT? Answer. No. Answer doesn’t change.
9
VM Ayres, ECE802-604, F13 Example: for the paper cutout, number and create the largest possible zigzag CNT
10
VM Ayres, ECE802-604, F13 Example: for the paper cutout, number and create the largest possible zigzag CNT Answer: (5,0). HW: evaluate T and cut out the proper Unit cell length.
11
VM Ayres, ECE802-604, F13 Example: for the paper cutout, number and create the largest possible armchair CNT
12
VM Ayres, ECE802-604, F13 Example: for the paper cutout, number and create the largest possible armchair CNT Answer: (3,3). HW: evaluate T and cut out the proper Unit cell length.
13
VM Ayres, ECE802-604, F13 ARMCHAIR: ZIGZAG: Example: Unit vectors a 1 and a 2 are not pointing in the same directions in (a) and (b). What is the goal of each arrangement?
14
VM Ayres, ECE802-604, F13 ARMCHAIR: ZIGZAG: Example: Unit vectors a 1 and a 2 are not pointing in the same directions in (a) and (b). What is the goal of each arrangement? Answer:
15
VM Ayres, ECE802-604, F13 Lec 24: Graphene: the 6 equivalent K-points Bottom of the conduction band the 6 equivalent K-points metallic E kyky kxkx This factor slices the graphene E g2D
16
VM Ayres, ECE802-604, F13 Lec 24: At a K- point = metallic: Condition: Armchair (n,n) are always metallic
17
VM Ayres, ECE802-604, F13 Lec 24: At a K- point = metallic: Condition: Example: Prove this condition. First: identify the Unit vector system being used.
18
VM Ayres, ECE802-604, F13 ARMCHAIR: Answer: First: identify the Unit vector system being used.
19
VM Ayres, ECE802-604, F13
24
C h = n a 1 + m a 2 |C h | = a√n 2 + m 2 + mn cos = a 1 C h |a 1 | |C h | For HW:
25
VM Ayres, ECE802-604, F13 For HW: Find K 1 in this system. Show |K 1 | = 2 / |C h |
26
VM Ayres, ECE802-604, F13 Lec 06:
27
VM Ayres, ECE802-604, F13 Lec 24: What you can do with an E-k diagram: Answer:
28
VM Ayres, ECE802-604, F13 1DEG CNT: Conduction energy levels
29
VM Ayres, ECE802-604, F13 Lec 24: Consider an (n, n) armchair CNT. This is where the periodic boundary condition on k X comes from in: That leaves just k Y as open, MD calls it just k.
30
VM Ayres, ECE802-604, F13 Linearize graphene dependence around the K-point
31
VM Ayres, ECE802-604, F13 Lecture 26, 02 Dec 13 Molecular Electronics: Why not polyacetylene? or any conjugated “ene”? Examples of possibilities Actual performance Electronic ( ) structure brief review Mechanical ( ) structure brief review New: bond alteration structure Electronic result of bond alteration structure Qualitative
32
VM Ayres, ECE802-604, F13 CNTs: Electronic structure Armchair (n,n)Zigzag (3n,0)Armchair (≠3n,0)
33
VM Ayres, ECE802-604, F13 CNTs: Electronic device
34
VM Ayres, ECE802-604, F13 Graphene: Electronic structure
35
VM Ayres, ECE802-604, F13 Graphene: Electronic device
36
VM Ayres, ECE802-604, F13 Polyacetylene: Electronic structure
37
VM Ayres, ECE802-604, F13 Polyacetylene: Electronic device
38
VM Ayres, ECE802-604, F13 Polyphenylene: Electronic structure:
39
VM Ayres, ECE802-604, F13 Polyphenylene: Electronic device
40
VM Ayres, ECE802-604, F13
42
If it looked the same in 2008 as in 1992, there are some problems that people are still trying to solve!
43
VM Ayres, ECE802-604, F13 Actual performance: Polyphenylene and Polyactetylene Slow Variable Expected performance: Polyphenylene and Polyactetylene Quasi-ballistic like graphene and SWCNTs
44
VM Ayres, ECE802-604, F13 Factors that affect transport: Availability of electrons AND empty states to take them Scattering: – Particle-like: L < L m < L – Wavelike (ballistic): L < L m < L – Electrons in a 2D or 1D structure are wavelike and therefore should have limited scattering Transport mechanism: – Diffusion – Tunnelling – Ballistic (Plasmon) – Charge transfer – Soliton (Polaron) – Exciton – Hopping Injection (Contacts)
45
VM Ayres, ECE802-604, F13 Lecture 27, 03 Dec 13 Molecular Electronics: Why not polyacetylene? or any conjugated “ene”? Examples of possibilities Actual performance Electronic ( ) structure brief review Mechanical ( ) structure brief review New: bond alteration structure Electronic result of bond alteration structure Qualitative Quantitative Solitons (polarons): Su-Schreiffer-Heeger (SSH) model
46
VM Ayres, ECE802-604, F13 Division of structural and electronic properties in sp 2 makes both good: -C=C- Electronic: -bonds Structure: -bonds
47
VM Ayres, ECE802-604, F13 Electronic: -bonds Structure: -bonds Electronic: Delocalized e- * -conduction band e- ECE, PHY -anti-bonding e- CHM -valence band e- ECE, PHY -bonding e- CHM
48
VM Ayres, ECE802-604, F13 -C=C- Electronic: -bonds Structure: -bonds MECHANICAL ELECTRICAL Division of structural and electronic properties in sp 2 makes both good:
49
VM Ayres, ECE802-604, F13 Lecture 26, 02 Dec 13 Molecular Electronics: Why not polyacetylene? or any conjugated “ene”? Examples of possibilities Actual performance Electronic ( ) structure brief review Mechanical ( ) structure brief review New: bond alteration structure Electronic result of bond alteration structure Qualitative Quantitative Solitons (polarons): Su-Schreiffer-Heeger (SSH) model
50
VM Ayres, ECE802-604, F13 Review: Polyacetylene: H AA types: “A” c ccc c H H H H H “B” c H c H -a+a c H c H
51
VM Ayres, ECE802-604, F13 New: Bond alteration polyacetylene: H AA types: No formula changes due to long single and short double bonds “A” c H c H c H c H c H “B” c H c H -a+a c H c H
52
VM Ayres, ECE802-604, F13 Review: Polyacetylene: H AB types: “A” c ccc c H H H H H “B” a c H c H a -a/2+a/2
53
VM Ayres, ECE802-604, F13 New: Bond alteration polyacetylene: H AB types “A” c H c H c H c H c H “B” c H c H -a+a c H c H “B”
54
VM Ayres, ECE802-604, F13 Also: Two “identical” bond alterations
55
VM Ayres, ECE802-604, F13 This is handled by a perturbation approach. lessmore
56
VM Ayres, ECE802-604, F13
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.