Download presentation
Presentation is loading. Please wait.
Published byBasil Dylan Marshall Modified over 9 years ago
1
Geometry Grab your clicker and get ready for the warm-up
2
The distance from a point to a line can be called the “” distance 1.Parallel 2.Vertical 3.Perpendicular 4.Circumcenter 5.Bisector 1234567891011121314151617181920 212223242526272829303132
3
A point on a perpendicular bisector is from the two endpoints of the bisected segment 1.Equidistant 2.Perpendicular 3.Corresponding 4.Centroid 5.Midpoint 1234567891011121314151617181920 212223242526272829303132
4
A point on an angular bisector is equidistant from the two of the angle 1.Angles 2.Vertices 3.Right Angles 4.Sides 5.Incenters 1234567891011121314151617181920 212223242526272829303132
5
The point of concurrency for the perpendicular bisectors of a triangle is called the 1.Incenter 2.Orthocenter 3.Midpoint 4.Circumcenter 5.Centroid 6.Midsegment 1234567891011121314151617181920 212223242526272829303132
6
The point of concurrency for the angular bisectors of a triangle is called the 1.Incenter 2.Orthocenter 3.Midpoint 4.Circumcenter 5.Centroid 6.Midsegment 1234567891011121314151617181920 212223242526272829303132
7
A median of a triangle goes from the vertex to the of the opposite side 1.Circumcenter 2.Angle 3.Perpendicular 4.Centroid 5.Side 6.Midpoint 7.Orthocenter 1234567891011121314151617181920 212223242526272829303132
8
The point of concurrency for the medians of a triangle is called the 1.Incenter 2.Orthocenter 3.Midpoint 4.Circumcenter 5.Centroid 6.Midsegment 1234567891011121314151617181920 212223242526272829303132
9
An altitude goes from a vertex and is to the opposite side 1.Circumcenter 2.Angle 3.Perpendicular 4.Centroid 5.Side 6.Midpoint 7.Orthocenter 1234567891011121314151617181920 212223242526272829303132
10
The point of concurrency for the altitudes of a triangle is called the 1.Incenter 2.Orthocenter 3.Midpoint 4.Circumcenter 5.Centroid 6.Midsegment 1234567891011121314151617181920 212223242526272829303132
11
The circumcenter of a triangle is equidistant from the 1.Vertices 2.Incenter 3.Centroid 4.Perpendicular 5.Sides 1234567891011121314151617181920 212223242526272829303132
12
The incenter of a triangle is equidistant from the 1.Vertices 2.Incenter 3.Centroid 4.Perpendicular 5.Sides 1234567891011121314151617181920 212223242526272829303132
13
The Pythagorean Theorem for this right triangle would state: 1.a 2 + b 2 = c 2 2.f 2 + g 2 + h 2 = 180 3.f 2 + g 2 = h 2 4.h 2 + g 2 = f 5.g 2 + h 2 = 90 6.g 2 + h 2 = f 2 7.g 2 – h 2 = f 2 1234567891011121314151617181920 212223242526272829303132
14
Given C is the centroid and that XC = 8, determine CK 1.16 2.14 3.12 4.10 5.8 6.6 7.4 8.2 9.1 1234567891011121314151617181920 212223242526272829303132
15
Given C is the centroid and that CZ = 3, determine CJ 1.9 2.3 3.6 4.1.5 5.4.5 6.Not possible 7.None of the above 1234567891011121314151617181920 212223242526272829303132
16
Given C is the centroid and that YI = 15, determine YC 1.9 2.12 3.3 4.6 5.1.5 6.4.5 7.7.5 8.8 9.Not possible 10.None of the above 1234567891011121314151617181920 212223242526272829303132
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.