Download presentation
Presentation is loading. Please wait.
Published byLesley Barnett Modified over 9 years ago
1
Indifference Curves and Individual and Social Production Possibilities
International Economics Professor Dalton ECON 317 – Fall 2014
2
Indifference Curves Characteristics 1. Fixed preferences
Y/time Characteristics 1. Fixed preferences 2. Negatively-sloped 3. Higher indifference curve represents greater utility 4. Convex 5. Non-intersecting 6. Slope = Marginal Rate of Substitution (MRSxy) U3 U2 U1 X/time
3
Indifference Curves A B
Y/time The Marginal Rate of Substitution represents a trade-off ratio; the marginal benefit from a unit of one good in terms of another. A 11 If the individual is at point A, an additional unit of X is worth 2Y. 9 B 3.2 U2 If the individual is at B, an additional X is worth 0.2 Y. 3 3 4 11 12 X/time
4
Budget Constraint A budget constraint is negatively-sloped, reflecting the notion of opportunity cost - one must give up one good to get more of another. The slope of a budget constraint measures the opportunity cost of one additional unit of a good in terms of the foregone units of the other good.
5
Budget Constraint In consumer choice, the budget constraint usually consists of an income constraint reflecting relative prices of the two goods. The budget constraint can also consist of a PPF. In either case, the slope of a budget constraint measures the opportunity cost of one additional unit of a good in terms of the foregone units of the other good.
6
Budget Constraint What is the slope of the budget constraint?
Slope equals rise over run. For an income constraint, slope equals I/Py divided by I/Px. (where I is income and Pj is the price of good j) I/Py/I/Px = Px/Py Y/time The slope of the budget constraint equals the price ratio Px/Py I Py A C I Px X/time
7
Budget Constraint The slope of the budget constraint equals MRTx,y
What is the slope of the individual production possibility frontier? Slope equals rise over run. For an PPF, slope equals Y divided by X, and is the Marginal Rate of Transformation, MRTx,y. Y/time The slope of the budget constraint equals MRTx,y A C Y X X/time
8
Individual Production Possibilities
Y/time An individual’s production possibilities frontier shows the quantities of goods, X and Y, that can be produced within a given time period while efficiently using the resources at hand. 30 X/time 15
9
Individual Production Possibilities
Y/time The slope equals ΔY/ΔX. Y = MPLY (L) and X =MPLX (L), so ΔY/ΔX = MPLY (L)/MPLX (L), or simply MPLY/MPLX. Begin with simple case of constant productivity. Suppose that L = 10, and MPLY = 3 and MPLX = 1.5. 30 At maximum, individual can produce Y = (10)(3) = 30 units of Y and X = (10)(1.5) = 15 units of X. X/time 15
10
Individual to Social Production Possibilities
Y/time Slope is called the marginal rate of transformation between X and Y, abbreviated MRTx,y, and it representahow much it costs in Y to produce an X 30 Slope is 30/15 = 2 The marginal cost of X = 2Y The marginal cost of Y = 1/2 X X/time 15
11
It depends upon what is meant by “best”!
Three Individual PPFs Y Y Y 180 Joe Sam Bill 100 30 30 X 150 X 120 X Which individual is the best producer of X? Which individual is the best producer of Y? It depends upon what is meant by “best”!
12
Comparative and Absolute Advantage
A person is said to have an absolute advantage in producing a good if he can produce more of the good than can another. A person is said to have a comparative advantage in producing a good if he can produce the good at a lower cost than another.
13
Three Individual PPFs Absolute Advantage
Y Y Y 180 Joe Sam Bill 100 30 30 X 150 X 120 X Absolute Advantage: Good X Sam (150) Bill (120) Joe (30) Absolute Advantage: Good Y Bill (180) Sam (100) Joe (30)
14
Three Individual PPFs Comparative Advantage
Y Y Y 180 Joe Sam Bill 100 30 30 X 150 X 120 X Comparative Advantage: Good X Sam: 2/3 Y Joe: 1 Y Bill: 3/2 Y Comparative Advantage: Good Y Bill: 2/3 X Joe: 1 X Sam: 3/2 X
15
Building the Social PPF
Y Y Y 180 Comparative Advantage: Good X Sam: 2/3 Y Joe: 1 Y Bill: 3/2 Y Bill Joe 30 310 30 X X 120 Y Sam 100 150 X 300 X
16
Building the Social PPF
The Social PPF is the “summation” of all the individual agents’ PPFs in the economy, constructed by applying the principle of comparative advantage.
17
Slope is flat at A. Low opportunity cost of X.
Many Person Social PPF Slope is flat at A. Low opportunity cost of X. Y/time A Slope is steep at B. High opportunity cost of X. B X/time
18
Choice: Combining Indifference Curves with Production Possibilities
Y/time Here, MRSx,y > Px/Py (or MRTx,y). The individual can buy an additional X for less than the additional unit is valued. MC MB Here, MRSx,y < Px/Py (or MRTx,y). The individual would have to pay more than the additional unit of X is valued. U3 U2 U1 1 2 X/time
19
Choice When the MRSx,y > Px/Py
Y/time When the MRSx,y > Px/Py (or MRSx,y > MRTx,y) , the individual can make himself better off by selling a unit of Y to purchase additional units of X, since a unit of X is valued more highly than a unit of Y at the going prices. So long as this remains true, the individual continues to move “down” his budget constraint. 1Y U3 U2 U1 1 3 X/time
20
He will have maximized his utility!
Choice Y/time When MRSx,y = Px/Py (or MRSx,y = MRTx,y), the individual will have reached a point where he can make himself no better off by a rearrangement of resources in X and Y consumption. Y* U3 U2 U1 He will have maximized his utility! X* X/time
21
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that the price of X falls… The consumer can now buy more X if all income is spent on X… But can buy no more Y if all income is spent on Y… X/time The budget constraint rotates outward “around” the original Y-intercept
22
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that the price of X increases… The consumer can now buy less X if all income is spent on X… But can buy no more Y if all income is spent on Y… X/time The budget constraint rotates inward “around” the original Y-intercept
23
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that the price of Y falls… The consumer can now buy more Y if all income is spent on Y… But can buy no more X if all income is spent on X… X/time The budget constraint rotates outward “around” the original X-intercept
24
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that the price of Y increases… The consumer can now buy less Y if all income is spent on Y… But can buy no more X if all income is spent on X… X/time The budget constraint rotates inward “around” the original X-intercept
25
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that money income I increases… The consumer can now buy more Y if all income is spent on Y… and can buy more X if all income is spent on X… X/time The budget constraint shifts outward. Does the slope change? NO.
26
Changes in the Budget Constraint
Y/time Starting from an original budget constraint … Suppose that money income I decreases… The consumer can now buy less Y if all income is spent on Y… and can buy less X if all income is spent on X… X/time The budget constraint shifts inward. Does the slope change? NO.
27
Changes in Indifference Curves
Y/time Start from an original set of Indifference Curves (only one of which is shown). If the individual is at point A, an additional unit of X is worth 2Y. A 11 9 Suppose that the individual’s preferences change so that X is now valued more highly (he prefers X relatively more)… 6 U2 Now the individual will value an additional unit of X at more than 2Y, say 5Y… 3 4 X/time The set of indifference curves will become steeper…
28
Changes in Indifference Curves
Y/time Start from an original set of Indifference Curves (only one of which is shown). If the individual is at point A, an additional unit of X is worth 2Y. A 11 10 Suppose that the individual’s preferences change so that Y is now valued more highly (he prefers X relatively less)… U2 Now the individual will value an additional unit of X at less than 2Y, say 1Y… 3 4 11 12 X/time The set of indifference curves will become flatter…
29
Changes in Behavior: Price
Y/time Beginning from equilibrium, suppose that Px falls. The budget constraint rotates outward around the Y-intercept… Y** Y* U3 U2 The consumer chooses a new X, Y combination: X**, Y** U1 X* X** X/time
30
Changes in Behavior: Price
Y/time Beginning from equilibrium, suppose that Px rises. The budget constraint rotates outward around the Y-intercept… Y’ Y* U3 U2 The consumer chooses a new X, Y combination: X’, Y’ U1 X’ X* X/time
31
Changes in Behavior: Income
Y/time Beginning from equilibrium, suppose that Income rises. The budget constraint shifts outward and the slope doesn’t change (why?) Y** Y* U3 U2 U1 The consumer chooses a new X, Y combination: X**, Y** X* X** X/time
32
Changes in Behavior: Income
Y/time As this graph what kind of goods are X and Y? Both are normal goods. Y** Y* U3 U2 U1 X* X** X/time
33
Changes in Behavior: Income
Y/time Suppose, that instead, money income had fallen. Again that means a new equilibrium, and a new equilibrium combination of X’ and Y’. Y* U3 Y’ U2 U1 X’ X* X/time
34
Changes in Behavior: Preferences
Y/time Start from an original equilibrium, A. Suppose preferences become more favorable to X…the IC steepen. A Y* B Y** The individual now moves to a bundle favoring more X and Less Y, at B. X* X** X/time
35
Social Indifference Curves?
Can we sum up the preferences of individuals into a social indifference curve? We could if we could measure the intensity of preferences independent of income levels, or measure utility directly. But we can’t. Further, Arrow’s Impossibility Theorem shows that there exists no rule that allows us to combine preferences without giving some one person in society totalitarian power over the resulting choice.
36
TANSTAASIC There ain’t no such thing as a Social Indifference Curve…(sometimes called a Social Welfare Function). But BEWARE, textbooks and journal articles often present graphs that pretend that we can aggregate individual preferences into a Social Preference Ordering – a Social Indifference Curve.
37
TANSTAASIC For a two good world, we can employ the fiction that the indifference curve represents the preferences of the marginal or representative individual in society. When we move to more than two goods, however, this fiction becomes untenable.
38
TANSTAASIC Why use graphs that show Country PPFs and Country ICs? (that violate TANSTAASIC!) As a short-hand for the more complicated process of actual price formation…that’s all. Don’t commit the fallacy of misplaced concreteness.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.