Download presentation
Presentation is loading. Please wait.
Published byKaren Hines Modified over 9 years ago
2
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters
3
par movies
4
Cmbgg OmOl 4% 21% 75% Using WMAP3 + SDSS LRGs:
5
430 386 13.8
6
Cmbgg OmOl Standard model parameters: Cosmology Particle physics Required Optional C = h = G = k b = q e = 1
7
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space? flat closed open Why are we cosmologists so excited?
8
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space?
9
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl How flat is space?Somewhat.
10
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl tot =1.003 How flat is space?
11
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB+SN Ia CMB+LRG Beth Reid et al, arXiv 0907.1559
12
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS
13
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS
14
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS
15
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS
16
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS
17
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl CMB + LSS Planck + SDSS: n=0.008, r=0.012
18
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra
19
4% 75% 21% Cosmological data Cosmological Parameters
20
4% 75% 21% Cosmological data Cosmological Parameters ARE WE DONE?
21
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
22
4% 75% 21% Cosmological data Fundamental theory ? Cosmological Parameters Nature of dark matter? Nature of dark energy? Nature of early Universe? Why these particular values?
23
4% 75% 21% Cosmological data Fundamental theory ? Cosmological Parameters Nature of dark matter? Nature of dark energy? Nature of early Universe? Why these particular values? Map our universe!
24
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Physics with 21 cm tomography
25
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Courtney Peterson Andy Lutomirski Tongyan Lin Adrian Liu Mike matejek Chris Williams T H E O M N I S C O P E R S
26
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Courtney Peterson Andy Lutomirski Tongyan Lin Adrian Liu Mike matejek Chris Williams Ed Morgan Joel Villasenor Jackie Hewitt T H E O M N I S C O P E R S
27
Scott Morrison T H E O M N I S C O P E R S
28
Scott Morrison Nevada Sanchez Henrique Pond é Oliveira Pinto Joe Lee Angelica de Oliveira-Costa
29
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Matias Zaldarriaga T H E O M N I S C O P E R S
30
Foreground modeling 0802.1525 Foreground removal astro-ph/0501081, 0807.3952 0903.4890 Optimal mapmaking 0909.0001 Automatic calibration Liu et al, in prep Faster correlation 0805.4414, 0909.0001 Corner turning 0910.1351 Survey design optimization 0802.1710
31
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 What are we so excited?
32
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496 Our observable universe
33
LSS Our observable universe
34
LSS The time frontier
35
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
36
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
37
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 The scale frontier
38
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles GMRT = Giant Metrewave Radio Telescope
39
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles 21CMA/PaST = Primeval Structure Telescope
40
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles LOFAR = Low Frequency ARray 2 Km 100 Km 32 sta. 77 sta. v v v v v v v v
41
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles MWA = Murchison Widefield Array
42
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles Cas A 3C 392 Cygnus A PAPER = Precision Array to Probe Epoch of Reionization
43
Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) 5.10 4 7.0.10 4 1.0.10 5 ~ 10 4 1.0.10 4 1.0.10 6 Imaging Field of View 2 o 3 o - 7.5 o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o - 0.4 o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) 50 - 142050 - 200 10 - 240 80 - 300110 - 200 Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year 20072007 2007 200820082015(?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles SKA = Square Kilometer Array
44
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Image: FORTE satellite MWA PAST/21CMA LOFARGMRTPAPER SKA ? 21 cm tomography experiments:
45
Participants: MIT, Harvard, Washington, Berkeley, JPL, NRAO PI: Jacqueline Hewitt, MIT LARC: Lunar Array for Radio Cosmology
46
The Omniscope MT & Matias Zaldarriaga, arXiv 0805.4414 [astro-ph]
47
Single-dish telescope: cost A 1.35 Sensitivity T (A ) -1/2 Interferometer: cost N 2 A 2 FFTT telescope idea: cost A, ~2 Telescopes as Fourier transformers How get huge sensitivity at low cost?
48
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
49
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
50
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
51
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
52
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
53
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
56
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Tegmark & Zaldarriaga 2008 The sensitivity frontier Omniscope
57
LSS Our observable universe
58
LSS Our observable universe Mao, MT, McQuinn, Zahn & Zaldarriaga 2008 Spatial curvature: WMAP+SDSS: tot = 0.01 Planck: tot = 0.003 21cm: tot =0.0002
59
LSS Our observable universe Spectral index running: Planck: =0.005 21cm =0.00017 2 -potential: 0.0007 4 -potential: 0.008 Mao, MT, McQuinn, Zahn & Zaldarriaga 2008
60
LSS Our observable universe Mao, MT, McQuinn, Zahn & Zaldarriaga 2008 Neutrino mass: WMAP+SDSS: m <0.3 eV +Ly F: m <0.17 eV Oscillations m >0.04 eV Future lensing: m ~0.03 eV 21cm: m =0.007 eV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.