Download presentation
Presentation is loading. Please wait.
Published byShauna Cameron Modified over 9 years ago
1
POSITIVE ANGLE The angle measured in an anticlockwise direction. NEGATIVE ANGLE The angle measured in a clockwise direction. y x y x TRIGONOMETRIC FUNCTION
2
y x 1 st QUADRANT 2 nd QUADRANT 3 rd QUADRANT 4 th QUADRANT SIN, COS, TAN ADD SUGAR TO COFFEE sin, cosine and tangent have positive values cosine has positive value tangent has positive value sin has positive value
3
y x REFERENCE ANGLE 1 st QUADRANT 2 nd QUADRANT 3 rd QUADRANT 4 th QUADRANT
4
EXAMPLE Calculate the followings: (a)sin 120 (b)cosine -120 y x (a) y x sin 120 = sin ( 180 120 ) = sin 60 cosine ( 120 ) = cosine ( 180 ( 120 ) ) = cosine ( 60 ) = cosine 60 = 0.8660 = 0.5 (b)
5
EXAMPLE Calculate the followings: (a)sin 845 (b)tan ( -860 ) y x (a) sin 845 = sin ( 845 720 ) = sin 125 = 0.8192 = sin (180 125 ) = sin 55 y x (b) tan ( 860 ) = tan ( 860 ( 720 )) = tan ( 140 ) = 0.8391 = tan (180 140 ) = tan ( 40 )
6
DEFINITION OF SINE COSINE AND TANGENT y x P m,n 1 1 0 n m 1 sin = cos = tan =
7
EXAMPLE P -0.75,-0.9 1 1 0 1 y x Q -0.8,0.5 Given the points P (-0.75, -0.9) and Q (-0.8, 0.5) on a unit circle as shown in the diagram. Find the values of (a)cos (b)sin (c)tan (d)tan (e)cos (a)cos = - 0.8 (b)sin = - 0.9 (c)tan = 1.2 (d)tan = - 0.625 (e)cos = - 0.75 Do the exercises in SP 2
8
DEFINITIONS OF SECANT, COSECANT AND COTANGENT The signs of cot , cosec and sec follow the signs of tan , sin and cos in the respective quadrant.
9
EXAMPLE 1 1 0 y x Q -0.78,0.6 Given the points Q (-0.78, 0.6) is on a unit circle as shown in the diagram. Find the values of (a)cosec 143.13 (b)sec 143.13 (c)cot 143.13 (d)tan 143.13 (e)cos 143.13 143.13 cosec 143.13 (a) = = = == Determine the value of the reference angle
10
sec 143.13 (b) = = = == cot 143.13 (c) = = = == TRY (d) and (e) Do the exercises in SP 3
11
EXAMPLE Determine the value for each of the following trigonometric functions. (a)cosec 140 (b)cot - ⅔ y x 140 cosec 140 (a) = = = == y x -⅔ -⅔ cot - ⅔ (b) = = = == Do the exercises in SP 4
12
2 1 2 1 60 30 SPECIAL ANGLES 30 , 45 , 60 2
13
1 1 45 22
14
EXAMPLE Without using a calculator, determine the value for each of the following trigonometric functions. (a)cot 240 (b)tan -225 y x (a) 240
15
y x (b) -225 Do the exercises in SP 5
16
SOLVING TRIGONOMETRIC EQUATIONS EXAMPLE Solve the following trigonometric equations for 0 360 . (a)sin - 0.6532(b)cos 2 = - 0.6824 (a) sin - 0.6532 -ve shows the quadrant sin -1 0.6532 40.78 // 40 47’ referenc e angle y x 40.78 180 40.78 // 180 40 47’, 360 - 40.78 // 360 - 40 47’. 220.78 // 220 47’, 319.22 // 319 13’.
17
(b) cos 2 = - 0.6824 0 2 720 2 cos -1 0.6824 2 46.97 // 46 59’ reference angle y x 46.97 2 180 - 46.97 , 180 + 46.97 , 2 133.03 , 226.97 , 360 + 133.03 , 360 + 226.97 586.97 . 493.03 , 66.52 , 113.49 , 246.52 , 293.49 .
18
12 ½x+12 192 EXAMPLE Solve 4 cos (½x + 12 ) + 1 3.626 for 0 x 360 . 4 cos (½x + 12 ) + 1 3.626 SOLUTION 4 cos (½x + 12 ) 3.626 - 1 cos (½x + 12 ) ½x + 12 cos -1 0.6565 ½x + 12 ½x 48.97 - 12 ½x 36.97 x 2 ( 36.97 ) x 73.94 48.97 Do the exercises in SP 6
19
SOLUTION FOR SP 7, N0 1 (a) y x 5 13 12 0 180 (b) (i) sin = (ii) tan = (iii) cosec = (iv) sec = Do the exercises in SP 7 90
20
EXAMPLE Solve 6 tan x – 3 cot x = 7 for 0 x 360 . SOLUTION 6 tan x – 3 cot x = 7 6 tan x – 3- 7 = 0 6 tan 2 x – 3- 7tan x = 0 6 tan 2 x – 7tan x -3 = 0
21
EXAMPLE Solve 2 cos x=sec x for 0 x 360 . SOLUTION
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.