Presentation is loading. Please wait.

Presentation is loading. Please wait.

outstanding problems in the physics of deformation of polymers

Similar presentations


Presentation on theme: "outstanding problems in the physics of deformation of polymers"— Presentation transcript:

1 outstanding problems in the physics of deformation of polymers
Han E.H. Meijer and Leon E. Govaert Dutch Polymer Institute (DPI) Materials Technology (MaTe) Eindhoven University of Technology (TU/e) APST ONE, Advances in Polymer Science and Technology July 8 – July 10, 2009, Johannes Kepler University Linz, Austria

2 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

3 localization of strain
tough brittle PC: necking moderate localization stable growth PS: crazing extreme localization unstable growth Falen: gradaties van reklokalisatie Geen reklokalisatie: homogene deformatie Matige reklokalisatie: insnoering / afschuifbanden : ductiel/taai falen, grote (zichtbare) plastische deformaties Sterke reklokalisatie: crazing : bros falen, nauwelijks (zichtbare) plastische deformaties Echter: op zeer lokale (microscopische) schaal, zeer grote deformaties, vaak groter dan voor macroscopisch taaie materialen!!

4 a comment on (solid state) rheology
branch of fluid mechanics call themselves non-Newtonian but are Newton’s successors that are mathematically well educated and only deal with transient homogeneous shear flows it took them 50 years to arrive at a constitutive equation that is also valid in transient homogeneous extensional flows solid state rheology: branch of solid mechanics Hooke’s successors that necessarily have to deal only with transient inhomogeneous extensional flows Falen: gradaties van reklokalisatie Geen reklokalisatie: homogene deformatie Matige reklokalisatie: insnoering / afschuifbanden : ductiel/taai falen, grote (zichtbare) plastische deformaties Sterke reklokalisatie: crazing : bros falen, nauwelijks (zichtbare) plastische deformaties Echter: op zeer lokale (microscopische) schaal, zeer grote deformaties, vaak groter dan voor macroscopisch taaie materialen!!

5 rejuvenation polystyrene PS

6 ageing mechanically rejuvenated moderate ageing severe ageing unstable
localisation homogeneous deformation stable localisation ductile ductile brittle

7 ageing

8 from compression to tension
intermolecular entanglement network total ageing + = Mn

9 from compression to tension
intermolecular entanglement network total ageing + = Mn tension increasing entanglement density

10 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

11 from compression to tension

12 from compression to tension

13 from compression to tension
fit tension prediction

14 indentation and scratching
mesh

15 indentation and scratching
indentor type round a c a Berkovich b b flat punch c

16 indentation and scratching
flat-ended cone angle: 60o diameter: 10.0 µm post-mortem visco-elastic visco-plastic

17 indentation and scratching
line: experiment symbol: prediction flat-ended cone angle: 60o diameter: 10.0 µm post-mortem visco-elastic visco-plastic

18 indentation and scratching
results are quantitative lines: experiments symbols: predictions ageing deformation rate ageing kinetics deformation kinetics

19 indentation and scratching
strategy hybrid experimental/numerical method polymer v Ff Fn Ff experiments Fadh= Ff - Fdef ? simulations Fdef interpretation of experiment by quantitative comparison with numerical simulation T,v,scale effects

20 indentation and scratching
results: experimental: influence sliding velocity

21 indentation and scratching
results: numerical: deformation only Fn=300mN v =0.1µm/s r =50 µm visco-elastic visco-plastic

22 indentation and scratching
results: experimental versus numerical deformation only Fadh Fdef Ff = Fdef + Fadh

23 indentation and scratching
results: numerical: influence interaction between indenter and polymer what about adhesion? most basic dry-friction model: Leonardo da Vinci (1452) Amonton (1699) - Coulomb (1781) stick: slip :

24 indentation and scratching
results: numerical: influence interaction between indenter and polymer

25 indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef Fadh = 0

26 indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef + Fadh Fadh Fdef

27 indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef + Fadh Fadh Fdef

28 indentation and scratching
results: numerical: influence interaction between indenter and polymer

29 indentation and scratching
results: experimental versus numerical validation using different tip Fn=150mN v =0.1µm/s r =10µm visco-elastic visco-plastic

30 indentation and scratching
results: experimental versus numerical validation using different tip

31 indentation and scratching
results: experimental versus numerical wear

32 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

33 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

34 deformation kinetics rate dependence of PC

35 deformation kinetics rate dependence of PC
Plastische deformatieproces is sterk reksnelheidsafhankelijk, deze afhankelijkheid is gelijk voor het het gehele gebied na het vloeipunt. Afhankelijkheid kan worden geillustreerd d.m.v. een vloeikarakteristiek waarbij de vloeispanning wordt uitgezet als functie van de reksnelheid. Deformeren met een constante reksnelheid leidt dan tot een vloeispanning. Omgekeerd geldt echter ook dat het aanleggen van een spanning (zoals in een kruipproef) leidt tot een (plastische) reksnelheid. Deze bepaalt vervolgens de tijdschaal van de plastische lokalisatie. rate dependence of PC

36 deformation kinetics constant strain rate response
rate-dependent yield constant stress . In deel 1 hebben we gezien dat de kinetiek van het faalgedrag in constante reksnelheidsproef en constante spanningsexperiment identiek aan elkaar zijn. In een trekproef is de vloeispanning gekoppeld aan de opgelegde reksnelheid, en in een kruipproef deformeert het materiaal met een constante reksnelheid gekoppeld aan de opgelegde spanning. failure under constant strain rate and constant stress experiment governed by same kinetics

37 time-dependent accumulation of plastic strain: plastic flow
deformation kinetics time-dependent accumulation of plastic strain: plastic flow

38 deformation kinetics influence of thermal history
Invloed van geschiedenis: verschillende toestanden Vloeispanning verschillend, echter bij toenemende deformatie verdwijnt het verschil beide worden verjongd door plastische deformatie: verjongde toestand is hetzelfde voor beide materialen: deze toestand is dus onafhankelijk van geschiedenis? Voor de vloeispanningskarateristiek : verschuiving naar links (lagere reksnelheden) : gevolgen voor door plastische reksnelheid : neemt af : tijd tot falen zal dus toenemen! influence of thermal history on intrinsic behavior influence of thermal history on rate dependence

39 deformation kinetics and time to failure
PC influence of thermal history on intrinsic behavior influence of thermal history on time-to-failure

40 deformation kinetics and time to failure
strain rate dependence of yield stress stress dependence of time-to-failure

41 deformation kinetics and time to failure
question 1: how does molecular architecture determine deformation kinetics

42 deformation kinetics and time to failure
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure

43 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

44 ageing and ageing kinetics
influence of thermal history on intrinsic behaviour influence of thermal history on rate dependence

45 ageing and ageing kinetics
PS PS: brittle fracture within hours PC: necking returns within months

46 ageing and ageing kinetics
ageing accelerated by temperature Arrhenius temperature dependence; ΔH 205 kJ/mol

47 ageing and ageing kinetics
ageing accelerated by stress

48 ageing and ageing kinetics
aged loading curve rate dependence of yield stress De invloed van geschiedenis wordt beschreven t.o.v. de verjongde referentietoestand door een enkele parameter Sa, die dus de hoogte van de vloeispanning en de sterkte van de softening bepaalt. Vergelijkbaar met de verschillend gekoelde materialen leidt dit tot een verschuiving naar lagere reksnelheden. Met verdere plastische deformatie wordt deze verschuiving weer ongedaan gemaakt, het materiaal wordt weer verjongd, en bereikt weer de referentiecurve. changes in thermal history captured by a single state parameter: Sa behaviour independent of molecular weight distribution

49 ageing and ageing kinetics
In de vorige slide is te zien dat de thermische geschiedenis van invloed is op de hoogte van de vloeispanning en dus ook van de hoeveelheid softening (=sterkere lokalisatie). Deze verandering van de materiaaltoestand is echter een continue proces. yield stress increases with time

50 ageing kinetics: two domains
temperature history received during processing temperature history received during product life ~seconds high temperatures fast evolution ~years low temperatures slow evolution evolution of yield stress in both domains governed by the same kinetics

51 ageing kinetics during processing

52 ageing kinetics during product life

53 ageing and ageing kinetics
rate dependent yield stress long-term failure both short-term and long-term deformation kinetics are captured !

54 ageing and ageing kinetics
rate dependent maximum load long-term failure failure of polycarbonate products predicted accurately without a single experiment !

55 ageing and ageing kinetics
“yielding” is mechanically passing Tg by applying stress ”melting’’ is thermally passing Tg by addition of heat Hodge and Berens, Macromol., 15, 762 (1982)

56 mechanical rejuvenation
polystyrene PS

57 ageing and ageing kinetics
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics

58 ageing and ageing kinetics
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour

59 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

60 strain hardening reversibility of deformation heat aboveTg return to
original geometry plastically deformed sample thermally- induced segmental motion

61 strain hardening reversibility of deformation

62 inspired Haward to decompose the stress
intermolecular network total inter- molecular network intermolecular component modulus and yield stress determined by interaction on segmental scale network component rubber-elastic response of the entanglement network through chain orientation

63 strain hardening chain orientation  entropy decrease
theoretical stress-stain response: N* : network density k : Boltzmann’s constant T : absolute temperature proportional to network density and temperature!

64 strain hardening BPA-model:Boyce et al. (1988); Arruda & Boyce (1993)
OGR-model: Buckley & Jones (1995), Buckley et al. (2004) EGP-model: Govaert et al. (2000), Klompen et al. (2005) Gr compression torsion tension This concept was adopted by many researches and extended to 3D constitutive equations Neo-Hookean hardening:

65 strain hardening G’Sell & Jonas (1981),
Haward (1993) Gaussian chain statistics true stress [Mpa] true stress [MPa] Neo-Hookean hardening:

66 strain hardening influence of network density
prevents extreme localization stabilizes deformation in tension

67 strain hardening influence of network density
response proportional to network density

68 strain hardening influence of network density Gr , 25 oC GN, Tg+30 oC
response proportional to network density two orders of magnitude difference

69 strain hardening influence of temperature
response proportional to network density two orders of magnitude difference contradicts entropic origin

70 strain hardening influence of temperature PS/PPE 20/80 40/60 60/40
80/20 100/0 response proportional to network density two orders of magnitude difference contradicts entropic origin suggests viscous contribution

71 strain hardening question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour question 3: how does molecular architecture determine strain hardening

72 strain hardening question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation

73 introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary

74 summary question 1: question 2: question 3:

75 acknowledgements PhD topic
marco van der sanden 1993 concept of ultimate toughness theo tervoort constitutive modelling peter timmermans 1997 modelling of necking robert smit multi-level finite element method bernd jansen microstructures for ultimate toughness harold van melick quantitative modelling ilse van casteren nanostructures for ultimate toughness edwin klompen long-term prediction jules kierkels toughness in thin films roel janssen creep rupture and fatigue tom engels coupling processing-properties lambert van breemen D modeling of micro-wear financial support: TU/e, STW, DPI

76

77 some thoughts…..some answers

78 some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure

79 some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other

80 some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other this situation is comparable to the rubbery state the only difference being that now the mobility is stress-activated

81 some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other this situation is comparable to the rubbery state the only difference being that now the mobility is stress-activated we are dealing with deformation rates at a stress-induced glass transition

82 some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour

83 some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow

84 some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow the force to achieve this increases with local densification (call it crystallization to know how to approach the problem and how to solve)

85 some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow the force to achieve this increases with local densification (call it crystallization to know how to approach the problem and how to solve) we are dealing with segmental densification kinetics on a order 10 monomer unit scale

86 some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation

87 some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable

88 some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable the force to achieve this increases with deformation and network density but decreases with temperature

89 some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable the force to achieve this increases with deformation and network density but decreases with temperature below Tg the material is a fluid only via stress-induced breaking of secundary bonds

90

91 and of course……semi-crystalline polymers

92 and of course……semi-crystalline polymers
injection moulding of unfilled PE orientation near skin 1 2 3 oriented row structure

93 and of course……semi-crystalline polymers
High impact injection moulding of unfilled PE

94 and of course……semi-crystalline polymers
injection moulding of CaCO3 filled PE

95 flow-induced crystallization

96 acknowledgements leon govaert

97 acknowledgements PhD topic
marco van der sanden 1993 concept of ultimate toughness theo tervoort constitutive modelling peter timmermans 1997 modelling of necking robert smit multi-level finite element method bernd jansen microstructures for ultimate toughness harold van melick quantitative modelling ilse van casteren nanostructures for ultimate toughness edwin klompen long-term prediction jules kierkels toughness in thin films roel janssen creep rupture and fatigue tom engels coupling processing-properties lambert van breemen D modeling of micro-wear financial support: TU/e, STW, DPI

98 and of course……semi-crystalline polymers

99 acknowledgements PhD topic
hans zuidema injection moulding, stress-induced crystallization frank swartjes crystallization in elongational flows bernard schrauwen 2003 injection moulding, processing-property relations hans van dommelen 2003 multi-level analysis of properties sachin jain PP-silica nanocomposites maurice van der beek 2005 density after flow: PVT-Tdot-gammadot jan-willem housmans 2008 crystallization in multi-pass rheometer flows barry koreman msc 3D modelling of injection moulding juan vega pd rheology during crystallization denka hristova pd time-resolved X-ray (grenoble) wook ryol hwang pd particle-laden viscoelastic flow university: gerrit peters, martien hulsen, han goossens, sanjay rastogi financial support: TU/e, STW, DPI


Download ppt "outstanding problems in the physics of deformation of polymers"

Similar presentations


Ads by Google