Download presentation
Published byAnnis Stanley Modified over 9 years ago
1
outstanding problems in the physics of deformation of polymers
Han E.H. Meijer and Leon E. Govaert Dutch Polymer Institute (DPI) Materials Technology (MaTe) Eindhoven University of Technology (TU/e) APST ONE, Advances in Polymer Science and Technology July 8 – July 10, 2009, Johannes Kepler University Linz, Austria
2
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
3
localization of strain
tough brittle PC: necking moderate localization stable growth PS: crazing extreme localization unstable growth Falen: gradaties van reklokalisatie Geen reklokalisatie: homogene deformatie Matige reklokalisatie: insnoering / afschuifbanden : ductiel/taai falen, grote (zichtbare) plastische deformaties Sterke reklokalisatie: crazing : bros falen, nauwelijks (zichtbare) plastische deformaties Echter: op zeer lokale (microscopische) schaal, zeer grote deformaties, vaak groter dan voor macroscopisch taaie materialen!!
4
a comment on (solid state) rheology
branch of fluid mechanics call themselves non-Newtonian but are Newton’s successors that are mathematically well educated and only deal with transient homogeneous shear flows it took them 50 years to arrive at a constitutive equation that is also valid in transient homogeneous extensional flows solid state rheology: branch of solid mechanics Hooke’s successors that necessarily have to deal only with transient inhomogeneous extensional flows Falen: gradaties van reklokalisatie Geen reklokalisatie: homogene deformatie Matige reklokalisatie: insnoering / afschuifbanden : ductiel/taai falen, grote (zichtbare) plastische deformaties Sterke reklokalisatie: crazing : bros falen, nauwelijks (zichtbare) plastische deformaties Echter: op zeer lokale (microscopische) schaal, zeer grote deformaties, vaak groter dan voor macroscopisch taaie materialen!!
5
rejuvenation polystyrene PS
6
ageing mechanically rejuvenated moderate ageing severe ageing unstable
localisation homogeneous deformation stable localisation ductile ductile brittle
7
ageing
8
from compression to tension
intermolecular entanglement network total ageing + = Mn
9
from compression to tension
intermolecular entanglement network total ageing + = Mn tension increasing entanglement density
10
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
11
from compression to tension
12
from compression to tension
13
from compression to tension
fit tension prediction
14
indentation and scratching
mesh
15
indentation and scratching
indentor type round a c a Berkovich b b flat punch c
16
indentation and scratching
flat-ended cone angle: 60o diameter: 10.0 µm post-mortem visco-elastic visco-plastic
17
indentation and scratching
line: experiment symbol: prediction flat-ended cone angle: 60o diameter: 10.0 µm post-mortem visco-elastic visco-plastic
18
indentation and scratching
results are quantitative lines: experiments symbols: predictions ageing deformation rate ageing kinetics deformation kinetics
19
indentation and scratching
strategy hybrid experimental/numerical method polymer v Ff Fn Ff experiments Fadh= Ff - Fdef ? simulations Fdef interpretation of experiment by quantitative comparison with numerical simulation T,v,scale effects
20
indentation and scratching
results: experimental: influence sliding velocity
21
indentation and scratching
results: numerical: deformation only Fn=300mN v =0.1µm/s r =50 µm visco-elastic visco-plastic
22
indentation and scratching
results: experimental versus numerical deformation only Fadh Fdef Ff = Fdef + Fadh
23
indentation and scratching
results: numerical: influence interaction between indenter and polymer what about adhesion? most basic dry-friction model: Leonardo da Vinci (1452) Amonton (1699) - Coulomb (1781) stick: slip :
24
indentation and scratching
results: numerical: influence interaction between indenter and polymer
25
indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef Fadh = 0
26
indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef + Fadh Fadh Fdef
27
indentation and scratching
results: numerical: influence interaction between indenter and polymer Fn vx Ff A2 Fsim polymer A1 Ff = Fsim = Fdef + Fadh Fadh Fdef
28
indentation and scratching
results: numerical: influence interaction between indenter and polymer
29
indentation and scratching
results: experimental versus numerical validation using different tip Fn=150mN v =0.1µm/s r =10µm visco-elastic visco-plastic
30
indentation and scratching
results: experimental versus numerical validation using different tip
31
indentation and scratching
results: experimental versus numerical wear
32
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
33
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
34
deformation kinetics rate dependence of PC
35
deformation kinetics rate dependence of PC
Plastische deformatieproces is sterk reksnelheidsafhankelijk, deze afhankelijkheid is gelijk voor het het gehele gebied na het vloeipunt. Afhankelijkheid kan worden geillustreerd d.m.v. een vloeikarakteristiek waarbij de vloeispanning wordt uitgezet als functie van de reksnelheid. Deformeren met een constante reksnelheid leidt dan tot een vloeispanning. Omgekeerd geldt echter ook dat het aanleggen van een spanning (zoals in een kruipproef) leidt tot een (plastische) reksnelheid. Deze bepaalt vervolgens de tijdschaal van de plastische lokalisatie. rate dependence of PC
36
deformation kinetics constant strain rate response
rate-dependent yield constant stress . In deel 1 hebben we gezien dat de kinetiek van het faalgedrag in constante reksnelheidsproef en constante spanningsexperiment identiek aan elkaar zijn. In een trekproef is de vloeispanning gekoppeld aan de opgelegde reksnelheid, en in een kruipproef deformeert het materiaal met een constante reksnelheid gekoppeld aan de opgelegde spanning. failure under constant strain rate and constant stress experiment governed by same kinetics
37
time-dependent accumulation of plastic strain: plastic flow
deformation kinetics time-dependent accumulation of plastic strain: plastic flow
38
deformation kinetics influence of thermal history
Invloed van geschiedenis: verschillende toestanden Vloeispanning verschillend, echter bij toenemende deformatie verdwijnt het verschil beide worden verjongd door plastische deformatie: verjongde toestand is hetzelfde voor beide materialen: deze toestand is dus onafhankelijk van geschiedenis? Voor de vloeispanningskarateristiek : verschuiving naar links (lagere reksnelheden) : gevolgen voor door plastische reksnelheid : neemt af : tijd tot falen zal dus toenemen! influence of thermal history on intrinsic behavior influence of thermal history on rate dependence
39
deformation kinetics and time to failure
PC influence of thermal history on intrinsic behavior influence of thermal history on time-to-failure
40
deformation kinetics and time to failure
strain rate dependence of yield stress stress dependence of time-to-failure
41
deformation kinetics and time to failure
question 1: how does molecular architecture determine deformation kinetics
42
deformation kinetics and time to failure
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure
43
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
44
ageing and ageing kinetics
influence of thermal history on intrinsic behaviour influence of thermal history on rate dependence
45
ageing and ageing kinetics
PS PS: brittle fracture within hours PC: necking returns within months
46
ageing and ageing kinetics
ageing accelerated by temperature Arrhenius temperature dependence; ΔH 205 kJ/mol
47
ageing and ageing kinetics
ageing accelerated by stress
48
ageing and ageing kinetics
aged loading curve rate dependence of yield stress De invloed van geschiedenis wordt beschreven t.o.v. de verjongde referentietoestand door een enkele parameter Sa, die dus de hoogte van de vloeispanning en de sterkte van de softening bepaalt. Vergelijkbaar met de verschillend gekoelde materialen leidt dit tot een verschuiving naar lagere reksnelheden. Met verdere plastische deformatie wordt deze verschuiving weer ongedaan gemaakt, het materiaal wordt weer verjongd, en bereikt weer de referentiecurve. changes in thermal history captured by a single state parameter: Sa behaviour independent of molecular weight distribution
49
ageing and ageing kinetics
In de vorige slide is te zien dat de thermische geschiedenis van invloed is op de hoogte van de vloeispanning en dus ook van de hoeveelheid softening (=sterkere lokalisatie). Deze verandering van de materiaaltoestand is echter een continue proces. yield stress increases with time
50
ageing kinetics: two domains
temperature history received during processing temperature history received during product life ~seconds high temperatures fast evolution ~years low temperatures slow evolution evolution of yield stress in both domains governed by the same kinetics
51
ageing kinetics during processing
52
ageing kinetics during product life
53
ageing and ageing kinetics
rate dependent yield stress long-term failure both short-term and long-term deformation kinetics are captured !
54
ageing and ageing kinetics
rate dependent maximum load long-term failure failure of polycarbonate products predicted accurately without a single experiment !
55
ageing and ageing kinetics
“yielding” is mechanically passing Tg by applying stress ”melting’’ is thermally passing Tg by addition of heat Hodge and Berens, Macromol., 15, 762 (1982)
56
mechanical rejuvenation
polystyrene PS
57
ageing and ageing kinetics
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics
58
ageing and ageing kinetics
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour
59
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
60
strain hardening reversibility of deformation heat aboveTg return to
original geometry plastically deformed sample thermally- induced segmental motion
61
strain hardening reversibility of deformation
62
inspired Haward to decompose the stress
intermolecular network total inter- molecular network intermolecular component modulus and yield stress determined by interaction on segmental scale network component rubber-elastic response of the entanglement network through chain orientation
63
strain hardening chain orientation entropy decrease
theoretical stress-stain response: N* : network density k : Boltzmann’s constant T : absolute temperature proportional to network density and temperature!
64
strain hardening BPA-model:Boyce et al. (1988); Arruda & Boyce (1993)
OGR-model: Buckley & Jones (1995), Buckley et al. (2004) EGP-model: Govaert et al. (2000), Klompen et al. (2005) Gr compression torsion tension This concept was adopted by many researches and extended to 3D constitutive equations Neo-Hookean hardening:
65
strain hardening G’Sell & Jonas (1981),
Haward (1993) Gaussian chain statistics true stress [Mpa] true stress [MPa] Neo-Hookean hardening:
66
strain hardening influence of network density
prevents extreme localization stabilizes deformation in tension
67
strain hardening influence of network density
response proportional to network density
68
strain hardening influence of network density Gr , 25 oC GN, Tg+30 oC
response proportional to network density two orders of magnitude difference
69
strain hardening influence of temperature
response proportional to network density two orders of magnitude difference contradicts entropic origin
70
strain hardening influence of temperature PS/PPE 20/80 40/60 60/40
80/20 100/0 response proportional to network density two orders of magnitude difference contradicts entropic origin suggests viscous contribution
71
strain hardening question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour question 3: how does molecular architecture determine strain hardening
72
strain hardening question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation
73
introduction predicting performance of present models outstanding problems: first question: origin of deformation kinetics second question: origin of ageing kinetics third question: origin of strain hardening summary
74
summary question 1: question 2: question 3:
75
acknowledgements PhD topic
marco van der sanden 1993 concept of ultimate toughness theo tervoort constitutive modelling peter timmermans 1997 modelling of necking robert smit multi-level finite element method bernd jansen microstructures for ultimate toughness harold van melick quantitative modelling ilse van casteren nanostructures for ultimate toughness edwin klompen long-term prediction jules kierkels toughness in thin films roel janssen creep rupture and fatigue tom engels coupling processing-properties lambert van breemen D modeling of micro-wear financial support: TU/e, STW, DPI
77
some thoughts…..some answers
78
some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure
79
some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other
80
some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other this situation is comparable to the rubbery state the only difference being that now the mobility is stress-activated
81
some thoughts…..some answers
question 1: how does molecular architecture determine deformation kinetics and thus the long term behaviour as reflected in the time-to-failure at the yield stress main-chain segmental motion is initiated and parts of the chains can move along side each other this situation is comparable to the rubbery state the only difference being that now the mobility is stress-activated we are dealing with deformation rates at a stress-induced glass transition
82
some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour
83
some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow
84
some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow the force to achieve this increases with local densification (call it crystallization to know how to approach the problem and how to solve)
85
some thoughts…..some answers
question 2: how does molecular architecture determine ageing kinetics and thus the polymer’s brittle or tough response but also the improved long term behaviour at the yield stress main-chain segmental motion is initiated, parts of chains can flow the force to achieve this increases with local densification (call it crystallization to know how to approach the problem and how to solve) we are dealing with segmental densification kinetics on a order 10 monomer unit scale
86
some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation
87
some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable
88
some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable the force to achieve this increases with deformation and network density but decreases with temperature
89
some thoughts…..some answers
question 3: how does molecular architecture determine strain hardening and thus the polymer’s response brittle or tough but also the anisotropic response after orientation after yield, main-chain large motion is initiated and entanglements become noticeable the force to achieve this increases with deformation and network density but decreases with temperature below Tg the material is a fluid only via stress-induced breaking of secundary bonds
91
and of course……semi-crystalline polymers
92
and of course……semi-crystalline polymers
injection moulding of unfilled PE orientation near skin 1 2 3 oriented row structure
93
and of course……semi-crystalline polymers
High impact injection moulding of unfilled PE
94
and of course……semi-crystalline polymers
injection moulding of CaCO3 filled PE
95
flow-induced crystallization
96
acknowledgements leon govaert
97
acknowledgements PhD topic
marco van der sanden 1993 concept of ultimate toughness theo tervoort constitutive modelling peter timmermans 1997 modelling of necking robert smit multi-level finite element method bernd jansen microstructures for ultimate toughness harold van melick quantitative modelling ilse van casteren nanostructures for ultimate toughness edwin klompen long-term prediction jules kierkels toughness in thin films roel janssen creep rupture and fatigue tom engels coupling processing-properties lambert van breemen D modeling of micro-wear financial support: TU/e, STW, DPI
98
and of course……semi-crystalline polymers
99
acknowledgements PhD topic
hans zuidema injection moulding, stress-induced crystallization frank swartjes crystallization in elongational flows bernard schrauwen 2003 injection moulding, processing-property relations hans van dommelen 2003 multi-level analysis of properties sachin jain PP-silica nanocomposites maurice van der beek 2005 density after flow: PVT-Tdot-gammadot jan-willem housmans 2008 crystallization in multi-pass rheometer flows barry koreman msc 3D modelling of injection moulding juan vega pd rheology during crystallization denka hristova pd time-resolved X-ray (grenoble) wook ryol hwang pd particle-laden viscoelastic flow university: gerrit peters, martien hulsen, han goossens, sanjay rastogi financial support: TU/e, STW, DPI
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.