Download presentation
Presentation is loading. Please wait.
Published byDebra Nichols Modified over 9 years ago
1
A picture is worth more than a 1000 words. It can save a life. Arjun Watane
3
Gaussian Derivative I = imread('brain_tumor_mri_1.jpg'); I2 = rgb2gray(I); k = fspecial('gaussian', [7 7], 1); %Gaussian filter kernal kdx = conv2(k,[1 0 -1], 'valid'); %figure; surf(kdx); kdy = conv2(k, [1; 0; -1], 'valid'); %figure; surf(kdy); imx = conv2(I2, kdx, 'valid'); imy = conv2(I2, kdy, 'valid'); figure; imshow(I2); %figure; imshow(imx); figure; imshow(imy); imwrite(imy, 'brainTumorMRI1_GaussianDerivative.jpg');
4
Gaussian Derivative
5
Edge Detector 6 edge-finding methods – Sobel – Prewitt – Roberts – Laplacian – Zero-Cross – Canny Tested on Groceries and a Brain MRI
6
Edge Detection on Groceries I5 = imread('groceries.jpg'); IBW = rgb2gray(I5); BW = edge(IBW, 'prewitt'); figure; imshow(BW); Changed “groceries.jpg” with brain_mri_1. Changed “prewitt” with sobel, canny, roberts, Log, and zerocross.
7
Prewitt Edge Detection on Groceries
8
Canny Edge Detection on Groceries
9
Roberts Edge Detection on Groceries
10
Sobel Edge Detection on Groceries
11
Log Edge Detection on Groceries
12
Zerocross Edge Detection on Groceries
13
Edge Detection on Brain MRI (Tumor Detection) Prewitt ZeroCrossLoGSobel Roberts Canny
14
Adaboost Pgm files work better. Found online jpg to pgm converter.
15
Adaboost Face Detection
18
Harris Corner Detector im = imread('groceries.jpg'); im = rgb2gray(im); k = fspecial('gaussian', [15 15], 1); dx =[-1 0 1; -1 0 1; -1 0 1];%Derivative Masks dy = dx'; %transpose x to make y kdx = conv2(im, dx, 'valid'); %Image Derivatives kdy = conv2(im, dy, 'valid'); kdx2 = kdx.^2; %square every number in the matrix kdy2 = kdy.^2; kdxy = (kdx.*kdy); %multiply every number in the matrix with each other kdx2 = conv2(kdx2, k, 'same'); kdy2 = conv2(kdy2, k, 'same'); kdxy = conv2(kdxy, k, 'same'); H = [kdx2 kdxy; kdxy kdy2]; M = (kdx2.*kdy2 - kdxy.^2) -.04*(kdx2 + kdy2).^2; %Harris Corner Measure Equation imshow(M); imwrite(M, 'groceriesHarrisCorner.jpg');
19
Harris Corner Detector
20
SVM
22
Bag of Features
23
Optical Flow
25
SIFT – Plot Descriptors pfx = fullfile(vl_root, 'data', 'obama3.jpg'); I = imread(pfx); image(I); I = single(rgb2gray(I)); [f,d] = vl_sift(I); perm = randperm(size(f,2)); sel = perm(1:4);%4 represents the # of features h1 = vl_plotframe(f(:,sel)) ; h2 = vl_plotframe(f(:,sel)) ; set(h1,'color','k','linewidth',3) ; set(h2,'color','y','linewidth',2) ; h3 = vl_plotsiftdescriptor(d(:,sel),f(:,sel)) ; set(h3,'color','g') ;
26
SIFT – Plot Descriptors
28
SIFT – Match Descriptor Points pfx = fullfile(vl_root, 'data', 'obama1.jpg'); %receives, reads, grayscales, and resizes the image from the vl_root directory I = imread(pfx); figure; imshow(I); Ia = single(rgb2gray(I)); Ia = imresize(Ia, [300 300]); pfx = fullfile(vl_root, 'data', 'obama3.jpg'); I = imread(pfx); figure; imshow(I); Ib = single(rgb2gray(I)); Ib = imresize(Ib, [300 300]); [fa, da] = vl_sift(Ia); %calculate sift points [fb, db] = vl_sift(Ib); [matches, scores] = vl_ubcmatch(da, db); %matches the points on the images m1 = fa(1:2, matches(1,:)); m2 = fb(1:2, matches(2,:)); m2(1, :) = m2(1,:)+size(Ia,2)*ones(1,size(m2,2)); X = [m1(1,:); m2(1,:)]; Y = [m1(2,:); m2(2,:)]; c = [Ia Ib]; figure; imshow(c,[]); hold on; line(X(:,1:1:15), Y(:,1:1:15)) %draw lines
29
SIFT – Match Descriptor Points
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.