Download presentation
Presentation is loading. Please wait.
Published byDale Hall Modified over 9 years ago
1
1 Part 3: Regulatory («stabilizing») control Inventory (level) control structure –Location of throughput manipulator –Consistency and radiating rule Structure of regulatory control layer (PID) –Selection of controlled variables (CV2) and pairing with manipulated variables (MV2) –Main rule: Control drifting variables and "pair close" Summary: Sigurd’s rules for plantwide control
2
2 Outline Skogestad procedure for control structure design I Top Down Step S1: Define operational objective (cost) and constraints Step S2: Identify degrees of freedom and optimize operation for disturbances –Identify active constraint regions Step S3: Implementation of optimal operation. What to control ? (economic CV’s) –Control Active constraints + self-optimizing variables Step S4: Where set the production rate? (Material balance/Inventory control) II Bottom Up Step S5: Regulatory control: What more to control (secondary CV’s) ? Step S6: Supervisory control Step S7: Real-time optimization
3
3 Step S4. Where set production rate? Very important decision that determines the structure of the rest of the inventory control system! May also have important economic implications Link between Top-down (economics) and Bottom-up (stabilization) parts –Inventory control is the most important part of stabilizing control “Throughput manipulator” (TPM) = MV for controlling throughput (production rate, network flow) Where set the production rate = Where locate the TPM? –Traditionally: At the feed –For maximum production (with small backoff): At the bottleneck
4
4 TPM (Throughput manipulator) Definition 1. TPM = MV used to control throughput (CV) Definition 2 (Aske and Skogestad, 2009). A TPM is a degree of freedom that affects the network flow and which is not directly or indirectly determined by the control of the individual units, including their inventory control. –The TPM is the “gas pedal” of the process –Value of TPM: Usually set by the operator (manual control) Operators are skeptical of giving up this MV to the control system (e.g. MPC) –The TPM is usually a flow (or closely related to a flow), e.g. main feedrate, but not always. It can be a setpoint to another control loop Reactor temperature can be a TPM, because it changes the reactor conversion, Pressure of gas product to pipeline can be a TPM, because it changes the gas product flowrate Fuel cell: Load (current I) is usually the TPM –Usually, only one TPM for a plant, but there can be more if there are parallel units or splits into alternative processing routes multiple feeds that do not need to be set in a fixed ratio –For many recycles we have a “Recycle TPM” BUT it usually has an optimal economic value (unconstrained optimum) which varies with disturbances – so it should not be fixed on a long time scale. That is, one a long time scale it should control some Self-optimizing CV –If we consider only part of the plant then the TPM may be outside our control. throughput is then a disturbance
5
5 TPM and link to inventory control Liquid inventory: Level control (LC) –Sometimes pressure control (PC) Gas inventory: Pressure control (PC) Component inventory: Composition control (CC, XC, AC)
6
6 Production rate set at inlet : Inventory control in direction of flow* * Required to get “local-consistent” inventory control TPM
7
7 Production rate set at outlet: Inventory control opposite flow* TPM * Required to get “local-consistent” inventory control
8
8 Production rate set inside process* TPM * Required to get “local-consistent” inventory control
9
9 General: “Need radiating inventory control around TPM” (Georgakis)
10
10 Consistency of inventory control Consistency (required property): An inventory control system is said to be consistent if the steady- state mass balances (total, components and phases) are satisfied for any part of the process, including the individual units and the overall plant.
11
11 CONSISTENT? QUIZ 1
12
12 Local-consistency rule Rule 1. Local-consistency requires that 1. The total inventory (mass) of any part of the process must be locally regulated by its in- or outflows, which implies that at least one flow in or out of any part of the process must depend on the inventory inside that part of the process. 2. For systems with several components, the inventory of each component of any part of the process must be locally regulated by its in- or outflows or by chemical reaction. 3. For systems with several phases, the inventory of each phase of any part of the process must be locally regulated by its in- or outflows or by phase transition. Proof: Mass balances Note: Without the word “local” one gets the more general consistency rule
13
13 CONSISTENT? QUIZ 1
14
14 Local concistency requirement -> “Radiation rule “(Georgakis)
15
15 Flow split: May give extra DOF TPM Split: Extra DOF (FC)Flash: No extra DOF
16
16 Consistent? Local-consistent? Note: Local-consistent is more strict as it implies consistent QUIZ 2
17
17 Closed system: Must leave one inventory uncontrolled QUIZ 3 Control smallest Inventory! (b) Is best if m1 large
18
18 OK? (Where is production set? NO. Two TPMs (consider overall liquid balance). Solution: Interchange LC and FC on last tank QUIZ 4 TPM 1 TPM 2
19
19 Example: Separator control (oil-gas separation offshore)
20
20 Example: Separator control Alternative TPM locations Compressor could be replaced by valve if p 1 >p G
21
21 Alt.1 Alt.2 Alt.3 Alt.4 Similar to original but NOT CONSISTENT (PC not direction of flow)
22
22 Example: Solid oxide fuel cell Solid oxide electrolyte TPM = current I [A] = disturbance O 2- e-e- CH4 H2O Air PC TC CC x CH4,s (in ratio with CH4 feed to reduce C and CO formation) CH 4 + H 2 O = CO + 3H 2 CO + H 2 O = CO 2 + H 2 2H 2 + O 2- → 2H 2 O + 2e - (excess O2) O 2 + 4e - → 2O 2- T s = 1070 K (active constraint) x H2 ??
23
23 LOCATION OF SENSORS Location flow sensor (before or after valve or pump): Does not matter from consistency point of view –Locate to get best flow measurement Before pump: Beware of cavitation After pump: Beware of noisy measurement Location of pressure sensor (before or after valve, pump or compressor): Important from consistency point of view
24
24 Where should we place TPM? TPM = MV used to control throughput Traditionally: TPM = Main feed valve (or pump/compressor) –Gives inventory control “in direction of flow” Consider moving TPM if: 1.There is an important CV that could otherwise not be well controlled –Dynamic reasons –Special case: Max. production important: Locate TPM at process bottleneck* ! TPM can then be used to achieve tight bottleneck control (= achieve max. production) Economics: Max. production is very favorable in “sellers marked” 2.If placing it at the feed may yield infeasible operation (“overfeeding”) –If “snowballing” is a problem (accumulation in recycle loop), then consider placing TPM inside recycle loop BUT: Avoid a variable that may (optimally) saturate as TPM (unless it is at bottleneck) –Reason: To keep controlling CV=throughput, we would need to reconfigure (move TPM)** **Sigurd’s general pairing rule (to reduce need for reassigning loops): “Pair MV that may (optimally) saturate with CV that may be given up” * Bottleneck: Last constraint to become active as we increase throughput -> TPM must be used for bottleneck control
25
25 QUIZ. Distillation. OK? LV-configuration TPM
26
26 DB-configuration OK??? TPM
27
27 cc *But DB-configuration is not recommended! DB-configuration: Level control NOT consistent by itself, but can still work* if we add one (or preferably two) composition/temperature loops TPM cc
28
28 QUIZ * Keep p ¸ p min ** Keep valve fully open * **
29
29
30
30
31
31
32
32
33
33
34
34 QUIZ
35
35 LOCATION OF SENSORS Location flow sensor (before or after valve or pump): Does not matter from consistency point of view –Locate to get best flow measurement Before pump: Beware of cavitation After pump: Beware of noise Etc. Location of pressure sensor (before or after valve, pump or compressor): Important from consistency point of view
36
36 Often optimal: Locate TPM at bottleneck! "A bottleneck is a unit where we reach a constraints which makes further increase in throughput infeasible" If feed is cheap and available: Located TPM at bottleneck (dynamic reasons) If the flow for some time is not at its maximum through the bottleneck, then this loss can never be recovered.
37
37 Single-loop alternatives for bottleneck control Bottleneck. Want max flow here Alt.1. Feedrate controls bottleneck flow (“long loop”…): FC F max Alt. 2: Feedrate controls lost task (another “long loop”…): F max Alt. 3: Reconfigure all upstream inventory loops: F max Traditional: Manual control of feed rate TPM
38
38 May move TPM to inside recycle loop to avoid snowballing Example: Eastman esterification process Alcohol recycle Alcohol + water + extractive agent (e) Ester product Reach max mass transfer rate: R increases sharply (“snowballing”)
39
39 First improvement: Located closer to bottleneck
40
40 Final improvement: Located “at” bottleneck + TPM is inside “snowballing” loop Follows Luyben’s law 1 to avoid snowballing(modified): “Avoid having all streams in a recycle system on inventory control”
41
41 Where should we place TPM? TPM = MV used to control throughput Traditionally: TPM = Main feed valve (or pump/compressor) –Operators like it. Gives inventory control “in direction of flow” Consider moving TPM if: 1.There is an important CV that could otherwise not be well controlled Dynamic reasons –Special case: Max. production important: Locate TPM at process bottleneck* ! Because max. production is very favorable in “sellers marked” TPM can then be used to achieve tight bottleneck control (= achieve max. flow) 2.If placing it at the feed may yield infeasible operation (“overfeeding”) –If “snowballing” is a problem (accumulation in recycle loop), then consider placing TPM inside recycle loop BUT: Avoid a variable that may (optimally) saturate as TPM (unless it is at bottleneck) –Reason: To keep controlling CV=throughput, we would need to reconfigure (move TPM)** **Sigurd’s general pairing rule (to reduce need for reassigning loops): “Pair MV that may (optimally) saturate with CV that may be given up” * Bottleneck: Last constraint to become active as we increase throughput -> TPM must be used for bottleneck control
42
42 A purely top-down approach: Start by controlling all active constaints at max. throughput (may give moving TPM) Economic Plantwide Control Over a Wide Throughput Range: A Systematic Design Procedure Rahul Jagtap, Nitin Kaistha * and Sigurd Skogestad * Step 0:Obtain active constraint regions for the wide throughput range Step 1:Pair loops for tight control of economic CVs at maximum throughput –Most important point economically –Most active constraints Step 2:Design the inventory (regulatory) control system Step 3:Design loops for ‘taking up’ additional economic CV control at lower throughputs along with appropriate throughput manipulation strategy Moving TPM Warning: May get complicated, but good economically because of tight control of active constraints
43
43
44
44 Conclusion TPM (production rate manipulator) Think carefully about where to place it! Difficult to undo later
45
45 Outline Skogestad procedure for control structure design I Top Down Step S1: Define operational objective (cost) and constraints Step S2: Identify degrees of freedom and optimize operation for disturbances Step S3: Implementation of optimal operation –What to control ? (primary CV’s) (self-optimizing control) Step S4: Where set the production rate? (Inventory control) II Bottom Up Step S5: Regulatory control: What more to control (secondary CV’s) ? –Distillation example Step S6: Supervisory control Step S7: Real-time optimization
46
46 Structure of regulatory control layer (PID) –Selection of controlled variables (CV2) and pairing with manipulated variables (MV2) –Main rule: Control drifting variables and "pair close" Summary: Sigurd’s rules for plantwide control
47
47 II. Bottom-up Determine secondary controlled variables (CV2) and structure (configuration) of control system (pairing, CV2- MV2) A good control configuration is insensitive to parameter changes Regulatory layer
48
48 Step 5. Regulatory control layer Purpose: “Stabilize” the plant using a simple control configuration (usually: local SISO PID controllers + simple cascades) Enable manual operation (by operators) Main structural decisions: What more should we control? (secondary cv’s, CV 2, use of extra measurements) Pairing with manipulated variables (mv’s u 2 ) CV 1 CV 2 = ? Regulatory layer
49
49 Objectives regulatory control layer 1.Allow for manual operation 2.Simple decentralized (local) PID controllers that can be tuned on-line 3.Take care of “fast” control 4.Track setpoint changes from the layer above 5.Local disturbance rejection 6.Stabilization (mathematical sense) 7.Avoid “drift” (due to disturbances) so system stays in “linear region” –“stabilization” (practical sense) 8.Allow for “slow” control in layer above (supervisory control) 9.Make control problem easy as seen from layer above 10.Use “easy” and “robust” measurements (pressure, temperature) 11.Simple structure 12.Contribute to overall economic objective (“indirect” control) 13.Should not need to be changed during operation Regulatory layer
50
50 Stabilizing control: Use inputs MV 2 =u 2 to control “drifting” variables CV 2 GK CV 2s u2u2 CV 2 CV 1 Key decision: Choice of CV 2 (controlled variable) Also important: Choice of MV2=u 2 (“pairing”) Primary CV Secondary CV (control for dynamic reasons) Process control: Typical «drifting» variables (CV2) are Liquid inventories (level) Vapor inventories (pressure) Some temperatures (reactor, distillation column profile) Regulatory layer
51
51 Degrees of freedom unchanged No degrees of freedom lost as setpoints y 2s replace inputs u 2 as new degrees of freedom for control of y 1 GK CV 2s u2u2 CV 2 CV 1 Original DOF New DOF Cascade control: Regulatory layer
52
52 Example: Exothermic reactor (unstable) u = cooling flow (q) CV 1 = composition (c) CV 2 = temperature (T) u TC CV 2 =T CV 2s CC CV 1 =c CV 1s feed product cooling LC L s =max Active constraints (economics): Product composition c + level (max) Regulatory layer
53
53
54
54 Degrees of freedom for optimization (usually steady-state DOFs), MVopt = CV1s Degrees of freedom for supervisory control, MV1=CV2s + unused valves Physical degrees of freedom for stabilizing control, MV2 = valves (dynamic process inputs) Optimizer (RTO) PROCESS Supervisory controller (MPC) Regulatory controller (PID) H2H2 H y 1 =CV 1 CV 2s y nyny d Stabilized process CV 1s y 2 =CV 2 Physical inputs (valves) Optimally constant valves Always active constraints u2u2 u1u1
55
55 Details Step 5 (Structure regulatory control layer) (a) What to control (CV2)? 1.Control CV2 that “stabilizes the plant” (stops drifting) 2.Select CV2 which is easy to control (favorable dynamics) In addition, active constraints (CV1) that require tight control (small backoff) may be assigned to the regulatory layer.* *Comment: usually not necessary with tight control of unconstrained CVs because optimum is usually relatively flat Regulatory layer
56
56 A. “Mathematical stabilization” (e.g. reactor): Unstable mode is “quickly” detected (state observability) in the measurement (y 2 ) and is easily affected (state controllability) by the input (u 2 ). Tool for selecting input/output: Pole vectors –y 2 : Want large element in output pole vector: Instability easily detected relative to noise –u 2 : Want large element in input pole vector: Small input usage required for stabilization B. “Practical extended stabilization” (avoid “drift” due to disturbance sensitivity): Intuitive: y 2 located close to important disturbance Maximum gain rule: Controllable range for y 2 is large compared to sum of optimal variation and measurement+control error More exact tool: Partial control analysis “Control CV2s that stabilizes the plant (stops drifting)”
57
57 “Control CV2 that stabilizes the plant (stops drifting)” In practice, control: 1.Levels (inventory liquid) 2.Pressures (inventory gas/vapor) (note: some pressures may be left floating) 3.Inventories of components that may accumulate/deplete inside plant E.g., amine/water depletes in recycle loop in CO2 capture plant E.g., butanol accumulates in methanol-water distillation column E.g., inert N2 accumulates in ammonia reactor recycle 4.Reactor temperature 5.Distillation column profile (one temperature inside column) Stripper/absorber profile does not generally need to be stabilized Regulatory layer
58
58 ( b) Identify pairings = Identify MVs (u 2 ) to control CV2, taking into account : Want “local consistency” for the inventory control –Implies radiating inventory control around given flow Avoid selecting as MVs in the regulatory layer, variables that may optimally saturate at steady-state (active constraint on some region), because this would require either –reassigning the regulatory loop (complication penalty), or –requiring back-off for the MV variable (economic penalty) Want tight control of important active constraints (to avoid back-off) General rule: ”pair close” (see next slide) Details Step 5b…. Regulatory layer
59
59 Step 5b…. Main rule: “Pair close” The response (from input to output) should be fast, large and in one direction. Avoid dead time and inverse responses! Regulatory layer
60
60 Sigurd’s pairing rule: “Pair MV that may (optimally) saturate with CV that may be given up” Main reason: Minimizes need for reassigning loops Important: Always feasible (and optimal) to give up a CV when optimal MV saturation occurs. –Proof (DOF analysis): When one MV disappears (saturates), then we have one less optimal CV. Failing to follow this rule: Need some “fix” when MV saturates to remain optimal, like –reconfiguration (logic) –backoff (loss of optimality) BUT: Rule may be in conflict with other criteria –Dynamics (“pair close” rule) –Interactions (“avoid negative steady-state RGA” rule) –If conflict: Use reconfiguration (logic) or go for multivariable constraint control (MPC which may provide “built-in” logic) Regulatory layer LV TC T s. loop LV TC T s LV TC T s TSTS (a) Normal: Control T using V (b) If V may saturate: Use L
61
61 Why simplified configurations? Why control layers? Why not one “big” multivariable controller? Fundamental: Save on modelling effort Other: –easy to understand –easy to tune and retune –insensitive to model uncertainty –possible to design for failure tolerance –fewer links –reduced computation load Regulatory layer
62
62 Hierarchical/cascade control: Time scale separation With a “reasonable” time scale separation between the layers (typically by a factor 5 or more in terms of closed-loop response time) we have the following advantages: 1.The stability and performance of the lower (faster) layer (involving y 2 ) is not much influenced by the presence of the upper (slow) layers (involving y 1 ) Reason: The frequency of the “disturbance” from the upper layer is well inside the bandwidth of the lower layers 2.With the lower (faster) layer in place, the stability and performance of the upper (slower) layers do not depend much on the specific controller settings used in the lower layers Reason: The lower layers only effect frequencies outside the bandwidth of the upper layers
63
63 XCXC TC FC ysys y LsLs TsTs L T z XCXC Cascade control distillation With flow loop + T-loop in top
64
64 QUIZ: What are the benefits of adding a flow controller (inner cascade)? q z qsqs 1.Counteracts nonlinearity in valve, f(z) With fast flow control we can assume q = q s 2.Eliminates effect of disturbances in p1 and p2 Extra measurement y 2 = q
65
65 Summary: Sigurd’s plantwide control rules Rules for CV-selection: 1. Control active constraints –Purity constraint on expensive product is always active (overpurification gives loss): 2. Unconstrained degrees of freedom (if any): Control “self-optimizing” variables (c). The ideal variable is the gradient of J with respect to the inputs (Ju = dJ/du), which always should be zero, independent of disturbances d, but this variable is rarely available –Exception (is available!): Parallel systems (stream split, multiple feed streams/manifold) with given throughput (or given total gas flow, etc.) –Should have equal marginal costs Jiu = dJi/du, so Ju = J1u - J2u, etc. –Heat exchanger splits: equal Jächke temperatures, JT1 = (T1 – Th1)^2/(T1-T0) In practice, one prefers to control single variables, c=Hy (where y are all available measurements and H is a selection matrix), which are easy to measure and control, and which have the following properties: Optimal value for c is almost constant (independent of disturbances): Want small magnitude of dcopt(d)/dd. Variable c is sensitive to changes in input: Want large magnitude of gain=dc/du (this is to reduce effect of measurement error and noise). –If the economic loss with single variables is too large, then one may use measurement combinations, c=Hy (where H is a “full” matrix). 3. Unconstrained degrees of freedom: NEVER try to control a variable that reaches max or min at the optimum (in particular, never control J) –Surprisingly, this is a very common mistake, even (especially?) with control experts Rules for inventory control: 1. Use Radiation rule (PC, LC, FC ++) 2. Avoid having all flows in a recycle system on inventory control (this is a restatement of Luyben’s rule of “fixing a flow inside a recycle system” to avoid snowballing) –A special case is a closed system Rules for pairing: 1. General: “Pair close” (large gain and small effective time delay) 2. CV1: Sigurd’s pairing rule: “Pair MV that may (optimally) saturate with CV that may be given up” 3. CV2 (stabilizing loop): Avoid MV that may saturate
66
66 Part 1 (3h): Plantwide control Introduction to plantwide control (what should we really control?) Part 1.1 Introduction. –Objective: Put controllers on flow sheet (make P&ID) –Two main objectives for control: Longer-term economics (CV1) and shorter-term stability (CV2) –Regulatory (basic) and supervisory (advanced) control layer Part 1.2 Optimal operation (economics) –Active constraints –Selection of economic controlled variables (CV1). Self-optimizing variables. Part 1.3 -Inventory (level) control structure –Location of throughput manipulator –Consistency and radiating rule Part 1.4 Structure of regulatory control layer (PID) –Selection of controlled variables (CV2) and pairing with manipulated variables (MV2) –Main rule: Control drifting variables and "pair close" Summary: Sigurd’s rules for plantwide control
67
67 Plantwide control. Main references The following paper summarizes the procedure: –S. Skogestad, ``Control structure design for complete chemical plants'', Computers and Chemical Engineering, 28 (1-2), 219-234 (2004). There are many approaches to plantwide control as discussed in the following review paper: –T. Larsson and S. Skogestad, ``Plantwide control: A review and a new design procedure'' Modeling, Identification and Control, 21, 209-240 (2000). The following paper updates the procedure: –S. Skogestad, ``Economic plantwide control’’, Book chapter in V. Kariwala and V.P. Rangaiah (Eds), Plant-Wide Control: Recent Developments and Applications”, Wiley (2012). More information: All papers available at: http://www.nt.ntnu.no/users/skoge/ http://www.nt.ntnu.no/users/skoge/plantwide
68
68 PC TC
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.