Download presentation
Presentation is loading. Please wait.
Published byEmerald Rachel Walsh Modified over 9 years ago
1
Min Chen School of Computer Science and Engineering Seoul National University Data Structure: Chapter 6
2
Definition of Trees Representing Rooted Tree Tree Traversal Preorder Traversal Postorder Traversal Level Order Traversal
3
Tree: Set of nodes and edges that connect them Exactly one path between any 2 nodes Rooted Tree: One distinguished node is called the root Every node C, except root, has one parent P, the first node on path from c to the root. C is P’s child Root has no parent A node can have any number of children
4
Leaf Node with no children Siblings Nodes with same parent Ancestors nodes on path from d to rott, including d, d’s parent, d’s grand parent, … root Descendant If A is B’s ancestor, then B is A’s Descendant
5
Length of path Number of edges in path Depth of node n Length of path from n to root Depth of root is zero Height of node n Length of path from n to its deepest descendant Height of any leaf is zero Height of a tree = Height of the root Subtree rooted at n The tree formed by n and its descendants
6
G & T Each node has 3 references stored in a list ▪ Item ▪ Parent ▪ Children Another Option: Sibling Tree Siblings are directly linked
7
Next Sibling Parent Item First Child Class SibTreeNode { Object item ; SibTreeNode parent ; SibTreeNodefirstChild; SibTreeNodenextSibling; } Class SibTreeNode { Object item ; SibTreeNode parent ; SibTreeNodefirstChild; SibTreeNodenextSibling; }
8
Next Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First ChildNext Sibling Parent Item First Child
9
Rooted Tree Preorder Traversal Postorder Traversal Level Order Traversal Binary Tree Inorder Traveral
10
Visit each node before recursively visiting its children, left to right A BC DEFGH A A’s First Child B B’s First Child D D has no child, then sibling E E has no child, then sibling F F has no child, no sibling B has no child, no sibling A has no child, then sibling C C’s First Child G G has no child, then sibling H H has no child, no sibling
11
Class SibTreeNode { public void preorder() { this.visit(); if(firstChild!=null){ firstChild.preorder(); } if(nextSibling!=null){ nextSibling.preorder(); } Class SibTreeNode { public void preorder() { this.visit(); if(firstChild!=null){ firstChild.preorder(); } if(nextSibling!=null){ nextSibling.preorder(); } Preorder Traversal Realization by Recursion
12
Preorder Traversal Realization by Stacks A BC DEFGH A B C A Stack: Visiting Sequence: B D E F DEFC G H GH
13
Visit each node’s children (left-to-right) before the node itself A BC DEFGH
14
Postorder Traversal Realization by Recursion Class SibTreeNode { public void postorder() { if(firstChild!=null) { firstChild.postorder(); } this.visit(); if(nextSibling!=null) { nextSibling.postorder(); } Class SibTreeNode { public void postorder() { if(firstChild!=null) { firstChild.postorder(); } this.visit(); if(nextSibling!=null) { nextSibling.postorder(); }
15
Visit root, then all (height-1) nodes, then all (height-2) nodes, … etc. A BC DEFGH
16
Level Order Traversal Realization by Queues Queue: A A BC DEFGH B C D E F G H A Visiting Sequence: BDEFCGH
17
A Binary Tree No node has > 2 children Every child is either left child or a right child, even if it is the only child
18
Binary Tree Node Right Child Parent Item Left Child Class BiTreeNode { Object item ; BiTreeNode parent ; BiTreeNode leftChild; BiTreeNode rightChild; } Class BiTreeNode { Object item ; BiTreeNode parent ; BiTreeNode leftChild; BiTreeNode rightChild; }
19
Right Child Parent Item Left ChildRight Child Parent Item Left ChildRight Child Parent Item Left ChildRight Child Parent Item Left ChildRight Child Parent Item Left ChildRight Child Parent Item Left Child
20
Visit left child, then node, then right child Class BiTreeNode { public void inorder() { if(leftChild!=null){ leftChild.inorder(); } this.visit(); if(rightChild!=null) { rightChild.inorder(); } Class BiTreeNode { public void inorder() { if(leftChild!=null){ leftChild.inorder(); } this.visit(); if(rightChild!=null) { rightChild.inorder(); }
21
Visualization of inorder traversal A BC DEF
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.