Presentation is loading. Please wait.

Presentation is loading. Please wait.

宇宙微波背景辐射 郭宗宽 中国科学院研究生院 2012.06.26. 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量) 观测实验的重要性 超新星,大尺度结构,宇宙微波背景辐射 宇宙射线, 21 厘米谱线,射电波,弱引力透镜,引力波,中微子.

Similar presentations


Presentation on theme: "宇宙微波背景辐射 郭宗宽 中国科学院研究生院 2012.06.26. 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量) 观测实验的重要性 超新星,大尺度结构,宇宙微波背景辐射 宇宙射线, 21 厘米谱线,射电波,弱引力透镜,引力波,中微子."— Presentation transcript:

1 宇宙微波背景辐射 郭宗宽 中国科学院研究生院 2012.06.26

2 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量) 观测实验的重要性 超新星,大尺度结构,宇宙微波背景辐射 宇宙射线, 21 厘米谱线,射电波,弱引力透镜,引力波,中微子 目前的进展和存在的问题 宇宙加速膨胀(暴涨,暗能量,修改引力,非均匀宇宙) 宇宙大尺度结构形成(冷 / 温 / 热暗物质,暗物质粒子的性质,暗物质分布) 交叉学科 -- 宇宙学

3 内容 1. 宇宙微波背景( CMB )辐射的形成 2.CMB 的发现和探测实验 3.CMB 的数据分析 4.CMB 各向异性的物理起源 5.CMB 的宇宙学解释 6. 展望

4 1. CMB 的形成 recombination decoupling

5 2. CMB 的发现和探测实验  the first discovery of CMB radiation in 1964-1965 the Nobel Prize in Physics 1978: A.A. Penzias and R.W. Wilson  CMB was predicted by G. Gamow et al. in 1948 T~5 K  interpreted by P.J.E. Peebles, D.T. Wilkinson, et al. in 1965

6  COBE (Cosmic Background Explorer) - the first generation CMB experiment, launched on 18 Nov. 1989, 4 years the Nobel Prize in Physics 2006: J.C. Mather and G.F. Smoot J.C. Mather G.F. Smoot (DMR) Hot big bang isotropy

7 ① the Far InfraRed Absolute Spectrophotometer (FIRAS) team ② the Differential Microwave Radiometer (DMR) team no atmospheric thermal emission full-sky map  advantages of satellite experiments:  the COBE satellite experiments:

8 141°  WMAP (Wilkinson Microwave Anisotropy Probe) - the second generation CMB experiment, launched on 30 June 2001, 9 years

9 free-free emission: electron-ion scattering synchrotron emission: the acceleration of cosmic ray electrons in magnetic fields thermal emission from dust 23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

10 angular power spectrum of CMB foreground mask

11 We have entered a new era of precision cosmology.!?

12  Planck - the third generation CMB experiment, launched on 14 May 2009, 30 months, 5 full-sky surveys LFI: 30, 44, 70 GHz HFI : 100, 143, 217, 353, 545, 857 GHz

13 NASA: CMBPol ESA: COrE  next generation CMB experiment

14 Other experiments: ground based experiments (QUaD, BICEP, ACT, ACTPol from 2013, SPT, SPTpol from 2012) balloon borne experiments (BOOMRANG, MAXIMA) 10 meter telescope  South Pole Telescope (SPT) 150 and 220 GHz in 2008 95, 150 and 220 GHz in 2009

15  Atacama Cosmology Telescope (ACT) 6 meter telescope 3 frequencies (148, 218, and 277 GHz)

16 3. CMB 的数据分析  the temperature anisotropies can be expanded in spherical harmonics time-ordered data full sky map spectrum parameter estimates  time-ordered data

17  for Gaussian random fluctuations, the statistical properties of the temperature field are determined by the angular power spectrum For a full sky, noiseless experiments,  cosmological parameter estimation likelihood function for a full sky: the sky-cut, MCMC

18 4. CMB 各向异性的物理起源 primary CMB anisotropies (at recombination)  inflation model (Alan H. Guth in 1981)  primordial power spectrum of curvature perturbations  angular power spectrum of CMB anisotropies V (φ) φ inflation reheating

19 for slow-roll inflation, the primordial power spectra of scalar/tensor perturbations: the coupled, linearized Boltzmann, Einstein and fluid equations: spherical harmonicsFourier space

20 the linearized Einstein equations: the Einstein equations:

21  reionization  thermal Sunyaev-Zel ’ dovich effect  lensing effect  integrated Sachs-Wolf effect secondary CMB anisotropies (after recombination)

22 large angular scales integrated SZ effect (<10) Sachs-Wolf effect (10~100) intermediate scales acoustic oscillations (100~1000) small scales (>1000) Silk damping: the dissipation of small-scale perturbations caused by photons' random walking out of overdense regions.  features of spectrum For full accuracy, the Boltzmann equation must be solved to follow the evolution of the photon distribution function.

23 5. CMB 的宇宙学解释

24 precision cosmology the content of our Universe The stronger the contraction, the higher these peaks should be.

25  the shape of the primordial power spectrum of curvature perturbations  detection of the primordial power spectrum of tensor perturbations  non-adiabaticity  non-Gaussianity 6. 展望

26 Thank you for your attention.

27  a main-sequence star (hydrogen)  red giant (helium → carbon, oxygen)  white dwarf (carbon, oxygen): electron degeneracy pressure, 1.4 solar masses  Type Ia supernova a main-sequence star (hydrogen, carbon, oxygen) Type Ib, Ic, II supernova (a line of hydrogen) neutron star (including pulsar): neutron degeneracy pressure, 1~2 solar masses a main-sequence star (hydrogen, carbon, oxygen) Type Ib, Ic, II supernova black hole: 3.2 solar masses

28 Adam G. Riess (High-Z), Saul Perlmutter (leader of SCP), Brian P. Schmidt (leader of High-Z)


Download ppt "宇宙微波背景辐射 郭宗宽 中国科学院研究生院 2012.06.26. 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量) 观测实验的重要性 超新星,大尺度结构,宇宙微波背景辐射 宇宙射线, 21 厘米谱线,射电波,弱引力透镜,引力波,中微子."

Similar presentations


Ads by Google