Download presentation
1
Hypernuclear Physics at J-PARC
Dept. of Physics, Tohoku University H. Tamura
2
Contents 1. Introduction 2. S=-1 2.1 g spectroscopy of hypernuclei
2.2 n-rich L hypernuclei 3. S=-2 3.1 X hypernuclear spectroscopy 3.2 LL hypernuclei 4. Experimental apparatus 5. Other plans 6. Summary
3
1. Introduction
4
World of matter made of u, d, s quarks
N Z L, S Hypernuclei LL, X Hypernuclei Nu ~ Nd ~ Ns Strangeness in neutron stars ( r > r0 ) Strange hadronic matter (A → ∞) “Stable” Strangeness -1 -2 Higher density Lower density n-rich nuclei 3-dimensional nuclear chart by M. Kaneta inspired by HYP06 conference poster
5
Motivation of Hypernuclear Physics
Extending “Nuclear Chart” in 3D space Hyperons stabilize nuclei -> extend n/p drip lines Toward multi-strange systems -> high density nuclear matter Baryon-Baryon interaction Unified picture of baryon-baryon interactions Understand short-range nuclear forces in terms of quarks Necessary to understand high density nuclear matter and strangeness mixing in neutron stars Impurity effects in nuclear structure Changes of size/shape, symmetry, cluster/shell structure,.. Nuclear medium effects of baryons Probed by hyperons free from Pauli effect
6
What we know about YN, YY interactions
Established Suggested Unknown LN Attractive (~ 2/3 of NN force) <- LZ L-single particle orbit data Very small LS force, small spin-spin/ tensor forces <- LZ p-shell g-ray data etc. LN-SN coupling force? <- s-shell L hypernuclei p-wave force? Charge symmetry breaking (Lp≠Ln)?? SN Strong isospin dependence (attractive for T=1/2,S=0) <- 4SHe Strongly repulsive in average? <- 28Si (p-,K+) spectrum How large is the repulsive (T=3/2,S=1) channel? XN Weakly attractive?? <- 12C (K-,K+) spectrum Isospin dependence??? LL Weakly attractive <- 6LLHe LL-XN-SS coupling force ??? LS, SS, XL, XS, XX Unknown at all ??? PRC 64 (2001) -> UL = - 30 MeV (c.f. UN = -50 MeV) J-PARC will answer
7
High density matter in neutron star core
Large neutron Fermi energy -> Hyperons appear Baryon fraction: very sensitive to YN, YY interactions -> maximum mass, cooling speed Hypernuclear data -> realistic calculations possible - We need XN int., LL int., KN int. (K condensate?), LN p-wave force, NNN and YNN force, … 帆座超新星残骸 r0 n star かに座超新星残骸 存在比率 密度 [Credit: NASA/SAO/CXC/J.Drake et al.] Credit: NASA/SAO/CXC/P.Slane et al. 直径が12km弱しかなく、中性子星より密度が高い。 西暦1181年に起きた超新星爆発のときにできたパルサーと考えられている。その温度が予想よりも低い。 南冠座の天体 RX J カシオペア座の天体3C58 ストレンジネス・クォーク星の可能性
8
S=-1
9
Present Status of L Hypernuclear Spectroscopy
(2006) Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.
10
2.1 S=-1 g spectroscopy of L hypernuclei
11
Hypernuclear g-ray data since 1998
(p+,K+ g) at KEK-PS (K-, p- g) at BNL-AGS using Ge array “Hyperball” NaI array (13LC) “Table of Hyper-Isotopes” EPJ A33 (2007) 243 PRC 77 (2008)
12
LN spin-dependent interactions
Low-lying levels of L hypernuclei Level spacing: Linear combination of D, SL, SN, T Millener’s approach Two-body LN effective interaction D SL SN T V - Well know from UL = - 30 MeV p-shell: 5 radial integrals for sL pN w.f. s D =∫V (r) |u (r)|2 r2dr, r = r - r sL pN
13
Determination of the spin-dependent force parameters
PRC 73 (’06) D , SL, T: consistent DE = -0.04D SL+ 0.99T 43 keV DE = 1.29D SL T 471 keV 9LBe 2+ 0+ 3/2+ 5/2+ 1/2+ 8Be 16LO 1- 0- 1/2- 3/2- 15O 7/2+ 7LLi 1/2+ 3/2+ 5/2+ 1+ 3+ 6Li DE = 0.70SN -310 keV DE = 1.44 D SL- 0.27T 692 keV DE = D SL+ 7.85T 26 keV D = 0.4 MeV SN = MeV SL = MeV T = 0.03 MeV PRL 86 (’00) 5963 PRL 88 (’02) PRL 93 (2004) -> Test and improve baryon-baryon interaction models (meson exchange/ quark models)
14
E13 (Tamura et al.) g-ray spectroscopy of light L hypernuclei
r (sL-dN) > r (sL-pN) sensitive to interaction range and exchanging meson mass (K-,p-) reaction (pK=1.5 GeV/c) at K1.8 line using SKS + Hyperball-J (developed for higher counting rate) Further study of LN interaction LN-SN coupling and three body force Charge symmetry breaking (Ln≠Lp?) Radial dependence (Interaction range) LHe, 10LB, 11LB, 19LF gL in a nucleus from spin-flip B(M1) 7LLi (K-,p- ) ?? Very large CSB !? Not theoretically understood. BL(MeV)
15
mL in nucleus -> medium effect of baryons
g factor of L in nucleus eh 2mqc mq= mL in nucleus -> medium effect of baryons mq : Const. quark mass Direct measurement extremely difficult (tL ~ ns) B(M1) of L-spin-flip M1 transition -> gL reduction of mass -> enhancement of m?? in s-orbit gc Doppler Shift Attenuation Method : ~100% applied to “hypernuclear shrinkage” in 7LLi from B(E2) : PRL 86 (’01)1982 -> Precise B(M1) measurement (~5%) of 7LLi at J-PARC
16
2.2 S=-1 n-rich hypernuclei
17
Search for n-rich hypernuclei by (Stopped K-, p+)
9LHe 6LH 12LBe 7LH 16LC Only upper limit Background from Sigma decay
18
Neutron-rich hypernucleus
(KEK E521, K6+SKS) Physics Interest L-S coherent coupling -> more bound? Behavior of n-halo with a L Production mechanism? 2-step charge exch. (p-p->p0n, p0p->K+L etc.) S- admixture (p- p->S- K+, S- p->Ln) p- p p -> L n K+ 10B (p-, K+) 10LLi pp~1.2 GeV/c L-S coherent coupling Akaishi et al., PRL 84 (2000) 3539 11.1±1.9 nb/sr Almost no background Saha et al., PRL 94 (2005) First data on n-rich hypernucleus
19
E10 (Sakaguchi et al.) Study on Neutron-Rich Hypernuclei
Produce neutron-rich hypernuclei by the double charge-exchange (DCX) reaction NCX: (K-,p-), (p+,K+) reaction L-hypernuclei SCX: (e,e’K+), (K-,p0), (p-,K0) reaction DCX: (K-,p+), (p-,K+) reaction NCX ordinary nuclei SCX this study DCX Akaishi: Glue-like role of L (BL=4.4 MeV) + LNN coherent coupling ( +1.4 MeV) 6LH p 5H n n n L p n n n n n unbound “Hyperheavy hydrogen”: deeply bound
20
S= -2 X-hypernuclei
21
E05 (Nagae et al.) X-hypernuclear spectroscopy by (K-,K+)
K- p -> X- K+ 1st priority First spectroscopic study of S=-2 systems in (K-,K+) reaction First step to multi-strangeness baryon systems -> Take a similar spectrum for (K-,K+) reaction XN Interaction Attractive or repulsive? How large? <- X-nuclear potential depth Isospin dependence ? <- Different targets XN-LL coupling force ? <- Xp→LL conversion width <- X and LL hypernuclear mixing states
22
Previous data on XN interaction (BNL AGS E855)
PK=1.8 GeV/c ΔM=9.9 MeV/c2 (FWHM) for p(K−,K+)Ξ− −20 < EΞ < 0 MeV 89±14 nb/sr θ< 8° 42± 5 nb/sr θ<14° VΞ = -14 MeV?
23
Expected 12C (K-,K+) 12XBe Spectrum
ΔEmeas. = 3 MeVFWHM pX VΞ= -20MeV VΞ= -14MeV [counts/0.5MeV] sX Precision: Peak Position: MeV Width: MeV -BΞ [MeV]
24
3.2 S=-2 LL hypernuclei (and X- atoms)
25
A golden event of LL Hypernuclei
Nagara event The first well-identified double L hypernucleus event L n p “Triple magic nucleus” p(0s)2 n(0s)2L(0s)2 produced from K- p -> X- K+ reaction Mass -> DBLL =1.01± MeV - 0.11 Interaction between L-L is weekly attractive. Takahashi et al., PRL 87 (2001) KEK E377 Emulsion-counter hybrid method ~103 stopped X- PRL 87 (2001)
26
E03 (Tanida et al.) X- atomic X rays
E07 (Nakazawa, Imai, Tamura et al.) S=-2 Systems with Emulsion-Counter Hybrid Method Measure tracks by counters Ten times more events of LL hypernuclei >104 stopped X-, ~102 LL hypernuclei Details of LL interaction strength L-L correlation (H dibaryon-like state) in nucleus from “LL” -> S-p decay Measure X- -atomic X-rays with Hyperball-J Shift and width of X-rays -> X-nuclear potential Stopped X- events identified from emulsion “LL” -> S-p decay event E03 (Tanida et al.) X- atomic X rays by (K-,K+)X- on Fe target
27
Experimental Apparatus
K1.8
28
Hadron Hall Handron Hall SKS X hypernuclei LL hypernuclei
X-atomic X rays g spectroscopy n-rich L hypernuclei Q+ search w nucleus SKS Beam Dump K- nucleus bound states K- atomic X rays h, f nucleus K1.8 (Fall,2009~) KL Handron Hall K1.8BR (Dec.2008~) Production target (T1) K1.1 (when?) 30 (→ 50) GeV primary beam g spectroscopy S hypernuclei YN scattering Q+ nucleus K0.8 (when?)
29
An Example of Setup (E13) K- SKS spectrometer(SksMinus) p- 1.4 GeV/c
SKS superconducting magnet 1.4 GeV/c Hyperball-J K- 1.5 GeV/c K1.8 beamline spectrometer
30
SKS spectrometer SksPlus for (K-,K+) Modified SKS magnet 1.4 GeV/c
Disassembled Jan.15-30 Under modification of cooling system Assemble at J-PARC site (2008 Sep.-Oct.) 1.4 GeV/c SksPlus for (K-,K+) Additional magnet produced using an old iron yoke
31
Faster emulsion scanning system
Double-sided Si Strip Detector Almost same as PS-E373 Setup of E07 KURAMA spectrometer (existing) # Beam : K- (1.7GeV/c), 3 x 105 K-/spill with K-/p- > 6 at K1.8 beam-line (~20% of 9mA) # Trigger : (K-, K+) => 104 X- stopping events (more than 10 times higher statistics than E373) Hyperball-J Faster emulsion scanning system
32
5. Other plans High resolution (~0.2 MeV) (p±,K+) spectroscopy
for (n-rich) L, S hypernuclei (Noumi) Weak decay of L hypernuclei (Bhang) g spectroscopy of heavy L hypernuclei and n-rich L hypernuclei (Tamura) Light S hypernuclear systems (Tamura) SN, LN, (XN) scattering experiments (Ieiri, Miwa)
33
6. Summary Hypernuclear physics is one of the most important physics subjects at the J-PARC Hadron Hall. g spectroscopy of hypernuclei using Hyperball-J will further investigate LN interactions. Nuclear medium effect can be also studied from in-medium gL. n-rich L hypernuclei to be studied at J-PARC will extend the hypernuclear chart and clarify the LN-SN mixing. X hypernuclear data will provide the strength of XN interaction for the first time. Many LL hypernuclear samples will be found, establishing the LL interaction, and revealing a possible LL correlation.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.