Presentation is loading. Please wait.

Presentation is loading. Please wait.

初期宇宙における 大質量星形成領域のプローブとして の遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.)

Similar presentations


Presentation on theme: "初期宇宙における 大質量星形成領域のプローブとして の遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.)"— Presentation transcript:

1 初期宇宙における 大質量星形成領域のプローブとして の遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.)

2 200um300um500um1mm Atmospheric Windows from Atacama ( alt. 4800m ) Matsushita, Matsuo et al. PASJ (1999) 2

3 THz Cosmic Window 3

4 High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters.

5 FIR SED of Starburst galaxies OI, OIII NII, NIII CII Fischer et al. (1999)

6 FIR atomic fine structure lines OI – 63.185  m4.745THz 5.0×10 5 cm -3 – 145.54  m2.060THz 1.5×10 5 cm -3 OIII 35.1eV – 51.815  m5.786THz 3.4×10 3 cm -3 – 88.356  m3.393THz 5.0×10 2 cm -3 NII 14.5eV – 121.80  m2.461THz 2.8×10 2 cm -3 – 205.30  m1.460THz 4.5×10 1 cm -3 NIII 29.6eV – 57.330  m5.229THz 3×10 3 cm -3 CII 11.3eV – 157.68  m1.901THz 2.7×10 3 cm -3

7 Carina Nebula by ISO LWS Mizutani, Onaka, Shibai. (2002) [CII]

8 The Carina Nebula A very massive star-forming region at 2.3 kpc from N. Smith 24’x12’ Hubble Image [CII] 158  m [NII] 122  m [OIII] 88  m Matsuo et al. (2009)

9 30Dor region and R136  [OIII] 88  m is observed widely distributed around R136 Contour: MIPS 24  m Kawada et al. (2011) 300 Mo stars

10 Observation with ALMA Primordial Massive Star-Forming Region [OIII] 52um, 88um (ion potential 35 eV) – Probe of electron density and UV radiation Z > 8 observation of SFGs and GRBs Site of Cosmic Re-ionization

11 Example of [OIII] observations in submillimeter-wave Ferkinhoff (2010) ~ 10 -18 W/m 2

12 Herschel 10 um100 um1 mm [NeII] [SiIII] [OIII] [OI] [OIII] 10 -17 10 -18 10 -19 z=0.1 z=0.2 z=2 z=3 z=5 z=0.5 z=1 [CII] z=8 Wavelength Line Intensity W/m 2 M82 SPICA High-z Star-Forming Galaxies ALMA Bands 10 9 8 7 6 10 -20 z=10 10 -21

13 Single massive cluster – 1 ×10 -5 W/m 2 /sr from Carina – 10 arcmin in diameter @ 50 kpc from 30 Dor 7 × 10 -11 W/m 2 at z=10 -5 2 × 10 -22 W/m 2 at z=8 1.7 mJy for 10 km/s @ 350 GHz angular diameter 10 milli-arcsec [OIII] 88  m line intensities

14 » Band 7: 339-364 GHz → [OIII]88 @ z=8.3—9.0! » 感度は十分か? ˃[OIII]88/Hα 相関 (Kawada+11) ˃Cloudy 計算 で予想フラックスを推定 2013/1/26 14 ALMA 時代の宇宙の構造形成理論研究会 Kawada et al. 2011 linear

15 » Kawada et al. 2011 ˃I_[OIII]88 / I_Hα ~ 2/3 ˃Hα / Hβ ~ 3 (Case B 近似 ) » Cloudy (Ferland et al. 1998) ˃Z = 0.2 Zsun, log10(U) = -1.0, log10(n_H) = 0.0 » NOTE: nebula parameter dependence ˃Especially, metallicity 2013/1/26 15 ALMA 時代の宇宙の構造形成理論研究会

16 » z>8 candidates are detected only in rest-UV. » [OIII] – UV relation is required. » Let us relate Hβ with UV: ˃SFR conversion laws (~100Myr constant SF): 2013/1/26 16 ALMA 時代の宇宙の構造形成理論研究会 For Z=1/5Zsun (Inoue 2011) For Z=Zsun (Kennicutt 1998) Lower Z: larger UV—SFR factor Dust obscuration: smaller UV—SFR factor

17 » Kawada+11 obs. » Cloudy calculations » Hβ, UV – SFR relation » Finally, we obtain 2013/1/26 17 ALMA 時代の宇宙の構造形成理論研究会

18 2013/1/26 18 ALMA 時代の宇宙の構造形成理論研究会 27.5—28.0 AB で ~ 1 mJy (100 km/s)

19 Expected Brightness Gravitational lensed sources – 25-26 mag at H160 – 10 mJy  v=100km/s – Limited redshift information HUDF sources (Dec. -28deg) – 27-28 mag at H160 – 2 mJy  v=100km/s – Many candidates at z~8

20 Redshift probability distributions

21

22 Z=8.11 for [OIII] 88um Z=8.74

23 » UDF12 により UV slope の測定精度が向上 ˃β ~-2 ˃Z ~ Zsun, no dust OR Z ~ 0.1—0.2 Zsun with Av ~ 1mag (Dunlop et al. 2013) » 十分に酸素はあるはず 2013/1/26 23 ALMA 時代の宇宙の構造形成理論研究会 Robertson et al. 2013

24 » 赤方偏移 z>8.3 を狙うため、 Y105-J125 > 1.6 を課し、 Cycle1 で観測条件の良い天体 » UDF092y-07580550 H160=27.1mag ˃Y105-J125 > 2.4 » CANDY-2350049216 H160=27.0mag ˃Y105-J125 > 2.3 » 残念ながら不採択 ˃Too risky! 2013/1/26 24 ALMA 時代の宇宙の構造形成理論研究会

25 » BoRG や CANDELS にも <28AB 天体が20個ほ どある 2013/1/26 25 ALMA 時代の宇宙の構造形成理論研究会 Schenker et al. 2013

26 2013/1/26 26 ALMA 時代の宇宙の構造形成理論研究会 Ellis et al. 2013

27 High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters.

28 宇宙背景放射観測の現状 宇宙赤外線背景放射( CIB ) = 観測値 ー 前景放射 宇宙赤外線背景放射( CIB ) = 観測値 ー 前景放射 前景放射: 太陽系(黄道光)、銀河系(星、星間ダスト放 射) 前景放射: 太陽系(黄道光)、銀河系(星、星間ダスト放 射) 近赤外域には銀河の重ねあわせでは説明できない超過成分 近赤外域には銀河の重ねあわせでは説明できない超過成分 黄道光(前景放射) 系外銀河 の重ねあわせ ( SUBARU, HST, Spitzer, BLAST ) 背景放射 CMB 第一世代の星 Ly-  ? 28 From S. Matsuura

29

30 Carinae Nebula at 2.3 kpc


Download ppt "初期宇宙における 大質量星形成領域のプローブとして の遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.)"

Similar presentations


Ads by Google