Presentation is loading. Please wait.

Presentation is loading. Please wait.

On Locally Decodable Codes Self Correctable Codes t-private PIR and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel.

Similar presentations


Presentation on theme: "On Locally Decodable Codes Self Correctable Codes t-private PIR and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel."— Presentation transcript:

1 On Locally Decodable Codes Self Correctable Codes t-private PIR and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel

2 On Locally Decodable Codes Self Correctable Codes and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel Server Client [CGKS95] Want: Correctness and privacy for the client Communication: Only the trivial Ω(n) solution i ∈ [n] i? xixi q A(q,x) x ∈ {0,1} n t-private PIRPIR Private Information Retrieval

3 Client i xixi t servers x x ∈ {0,1} n x k servers i? [CGKS95] Private Information Retrievalt-private q1q1 A(q 1,x) q2q2 A(q 2,x) PIRk-server PIR

4 PIRt-privateBest known Const. kK=3K=2 Servers Paper n 1/(2k-1) n 1/5 n 1/3 CGKS95, BI01,WY05 n loglogk/klogk n 1/5.25 n 1/3 BIKR02 n 10 -7 (or n 1/loglogn )- Yek07 t-private version ✔ ? ?

5 C message x encoding C(x) i C:{0,1} n → {0,1} m(n) is a k-LDC Randomized Decoder D k-query LDC C:{0,1} n → {0,1} m k-server PIR logm query bits 1 bit answer [KT00] xixi k On Locally Decodable Codes Self Correctable Codes t-private PIR and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel

6 PIR C k replicas database x k-query LDC C:{0,1} n → {0,1} m k-server PIR logm query bits [KT00] C message xencoded message C(x) LDC

7 Best known LDCs Const. kK=3 Probes Paper exp(n 1/(k-1) )exp(n 1/2 ) BF90, CGKS95, BI01 exp(n loglogk/klogk )exp(n 1/2 ) BIKR02 exp(n 10 -7 ) (or exp( n 1/loglogn )) Yek07

8 On Locally Decodable Codes Self Correctable Codes t-private PIR and C message xencoding C(x) j C:{0,1} n → {0,1} m(n) is a k-SCC Randomized Corrector M systematic k-LDC Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel linear k-query SCC C:{0,1} n → {0,1} m linear k-query LDC C:{0,1} n → {0,1} m k C(x) j

9 Is it SCC? ✔ ? ? SCCLDC ? Const. kK=3 Probes Paper exp(n 1/(k-1) )exp(n 1/2 ) BF90, CGKS95, BI01 exp(n loglogk/klogk )exp(n 1/2 ) BIKR02 exp(n 10 -7 ) (or exp( n 1/loglogn )) Yek07 Reed- Muller based

10 Main Problems Closing the gap between: 1-private and t-private PIR LDC and SCC RM SCC upper bound Yek07 LDC upper bound LDC lower bound

11 Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues

12 Our Contributions (1) 1-private k-server PIR t-private k t -server PIR 1-private k-server SRPIR t-private kt-server PIR k-LDC k-SCC Communication preserving transformations

13 Best known t-private PIR ? Const. kK=3K=2 Servers Paper n 1/(2k-1) n 1/5 n 1/3 CGKS95, BI01,WY05 n loglogk/klogk n 1/5.25 n 1/3 BIKR02 n 10 -7 (or n 1/loglogn )- Yek07 t-private version ✔ ? k t servers

14 Main Problems Closing the gap between: 1-private and t-private PIR LDC and SCC Closing the gap of LDC vs. SCC Closing the question on t-private PIR RM SCC upper bound Yek07 LDC upper bound LDC lower bound

15 Linear SCC vs. Combinatorial designs Based on Hamada’s Conjecture (1973): Evidence for difficulty of progress on the LDC vs. SCC question Our Contributions (2)

16 LDC vs. SCC Is it SCC? ✔ ? ? Const. kK=3 Probes Paper exp(n 1/(k-1) )exp(n 1/2 ) BF90, CGKS95, BI01 exp(n loglogk/klogk )exp(n 1/2 ) BIKR02 exp(n 10 -7 ) (or exp( n 1/loglogn )) Yek07 ?

17 Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues

18 1-private PIR  t-private PIR 1-private k-server PIR t-private k t -server PIR k-LDC

19 i X S 1,1 S 1,2 S 1,3 S 2,1 S 2,2 S 2,3 S 3,1 S 3,2 S 3,3 i ≡ i 1 + i 2 X i 1 +i 2 =X i q 1 (i 2 ) q 2 (i 2 ) q 3 (i 2 ) X=X<<0 X<<1 X<<2 ⋮ X<<i 2 ⋮ ⋮ X<<n-1 i1i1 i 1-private 3-server PIR to 2-private 3 2 -server PIR q 1 (i 1 )q 2 (i 1 )q 3 (i 1 ) A1A1 A2A2 A3A3 AAA i 2 ? i? i 1 ? i? A1A1 A2A2 A3A3

20 1-private k-server SRPIR t-private kt-server PIR k-SCC 1-private PIR  t-private PIR t(k-1)+1

21 Server Client q q? A(q,x) q’ A(q’,x) SRPIR = PIR+ x ∈ {0,1} n i i? xixi q A(q,x)

22 k-server SRPIR logm query bits k-query SCC C:{0,1} n → {0,1} m C message xencoded message C(x) SCC SRPIR C k replicas database x

23 X i 1-private 3-server SRPIR to 2-private 5-server PIR q1q1 q2q2 q3q3 A(q 3,x) A(q 2,x) A(q 1,x) S1S1 S2S2 S3S3 q 11 q 12 q 13 S1S1 S2S2 S3S3 q 23 q 12 q 22 q 31 q 32 q 33 xixi S?S? S?S? S?S? S?S? S?S? S?S? S1S1 S4S4 S5S5 S2S2 S3S3 S5S5 Threshold 3-out-of-5 circuit using only Threshold 2-out-of-3 gates NO

24 X i S1S1 S2S2 S3S3 S4S4 S5S5 Threshold 3-out-of-5 1-private 3-server SRPIR to 2-private 2(3-1)+1=5-server PIR Threshold 3-out-of-5 circuit using only Threshold 2-out-of-3 gates Threshold (t+1)-out-of-t(k-1)+1 circuit using only Threshold 2-out-of-k gates

25 Combinatorial designs 2-(m,k, λ ) design m points blocks: sets of k points each 2 points appear together in λ blocks 11111111 11 2-(24,4,1) design

26 Example: lines in F 17 2 design Points: GF(17) 2 =F 17 2 Blocks: points on a line 2-(17 2,17, 1 ) design

27 Low rank designs  good SCC 11111111 C = span 2-(m,k, λ ) design with p-rank r C ⊥ :F p m-r → F p m is a (k-1)-SCC

28 Hamada’s Conjecture (‘73): The 2-(p r,p,1) design that stems from the lines in F p r has the smallest p-rank of all the designs with the same parameters. the support of the low-weight words of the Reed-Muller code Reed-Muller SCCs are optimal Hamada’s conjecture

29 Generalization of the conjecture: Relaxation in the following senses dimension (rather than rank) over different fields (i.e. q-dimension) almost designs 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 5411 1122 2411 6412 4451 1662 3243 2116 6215 3541 3312 Generalized conjecture ⇓ Reed-Muller based SCCs are “essentially optimal”

30 Generalization of the conjecture: Relaxation in the following senses dimension (rather than rank) over different fields (i.e. q-dimension) almost designs Reed-Muller SCCs are “essentially optimal” Generalized conjecture

31 Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues

32 Summary Substantial improvement of best t-private PIR 1-private PIR ⇨ t-private PIR t-private version of Yekhanin’s protocol Interesting connection: SCC and t-private PIR Better SCC ⇨ better t-private PIR SCC=LDC ⇨ 1-private=t-private PIR Intriguing connection: SCC and p-rank designs Prove known SCC optimal ⇨ Hamada’s conjecture

33 RM SCC upper bound Yek07 LDC upper bound LDC lower bound Better t-private PIR Extend Yek07 to 2-private 5-server PIR? … or even 2-private 8-server PIR? LDC vs. SCC Better SCC than Reed-Muller based e.g. 3-SCC of length 2 o(√n) const. size alphabet Better Lower bounds on SCC separate SCC from LDC or even super-polynomial lower bounds on SCC Open Issues SCC lower bound

34 thank you


Download ppt "On Locally Decodable Codes Self Correctable Codes t-private PIR and Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel."

Similar presentations


Ads by Google