Download presentation
Published byLionel Sims Modified over 9 years ago
1
Do Now 3/12/10 Take out HW from last night. Copy HW in your planner.
Text p. 599, #73-81 all Copy HW in your planner. Text p. 603, #4-40 multiples of 4 In your notebook, define a perfect square in your own words. Then list the squares of the numbers 1 to 20.
2
Homework Text p. 599, #73 – 81 all 73) a² - 18a + 81
74) k² + 24k + 144 75) 9x² - 12x + 4 76) m² - 16 77) 4c² - 1 78) 25n² - 9 79) 9y² - 48y + 64 80) 4s² - 20st + 25t² 81) x² - 4y²
3
Chapter 9 “Polynomials and Factoring”
(9.1) Add and subtract polynomials (9.2) Multiply polynomials (9.3) Find special products of polynomials (9.4) Solve polynomial equations in factored form (9.5) Factor x² + bx + c (9.6) Factor ax² + bx + c (9.7) Factor special products (9.8) Factor polynomials completely
4
Objective SWBAT factor special product patterns
5
Section 9.7 “Factor Special Products”
(1) perfect square trinomials (2) the difference of two squares Squares are numbers or variables that have a whole number or whole variable square root. x² 9 t² 1 25 4z²
6
Section 9.7 “Factor Special Products”
You can use the following special products patterns to help you factor certain polynomials. Perfect Square Trinomial Pattern (addition) a² + 2ab + b² (a + b)² (a + b)(a + b) Perfect Square Trinomial Pattern (subtraction) a² – 2ab + b² (a – b)² (a - b)(a - b) Difference of Two Squares Pattern a² – b² (a + b)(a – b)
7
a² + 2ab + b² (a + b)² (x + 5)² x² + 10x + 25 (3x + 2)² 9x² + 12x + 4
Perfect Square Trinomial Pattern (addition) a² + 2ab + b² (a + b)² (a + b)(a + b) Always check for perfect squares FIRST!! (x + 5)² x² + 10x + 25 (3x + 2)² 9x² + 12x + 4 2(3x + 2)² 2(9x² + 12x + 4) 18x² + 24x + 8 Factor out 2 first, then look for perfect squares.
8
a² – 2ab + b² (a – b)² (x – 3)² x² – 6x + 9 (6y – 1)² 36y² – 12y + 1
Perfect Square Trinomial Pattern (subtraction) a² – 2ab + b² (a – b)² (a - b)(a - b) Always check for perfect squares FIRST!! (x – 3)² x² – 6x + 9 (6y – 1)² 36y² – 12y + 1 3(x² – 2xy + y²) 3x² – 6xy + 3y² 3(x – y)² Factor out 3 first, then look for perfect squares.
9
a² – b² (a + b)(a – b) x² – 16 (x + 4)(x – 4) 9(2y + 3)(2y – 3)
Difference of Two Squares Pattern a² – b² (a + b)(a – b) Always check for perfect squares FIRST!! x² – 16 (x + 4)(x – 4) 9(2y + 3)(2y – 3) 36y² – 81 (7c + d)(7c – d) 49c² – d²
10
Skills Review Handbook NJASK7 Prep
Homework Text p. 603, #4-40 multiples of 4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.