Download presentation
Presentation is loading. Please wait.
Published byDominick Powell Modified over 9 years ago
1
Holger S. P. Müller, Jürgen Stutzki, Stephan Schlemmer I. Physikalisches Institut Universität zu Köln 50937 Cologne, Germany The Cologne Database for Molecular Spectroscopy, CDMS, in Times of Herschel, SOFIA and ALMA 64th International Symposium on Molecular Spectroscopy; WH07
2
Overview I. Introduction II. The CDMS IV. Considerations for Herschel and SOFIA V. Considerations for ALMA III. Other Resources
3
Selected Terahertz Observatories APEX running ≤ 1.5 THz ~ 5100 m SOFIA, ~ 2010, ~ 3 THz ALMA ~ 2012 ≤ 0.72 THz ~ 5100 m Herschel Space Obs., running, ≤ 2 (5) THz
4
The Transmissivity of the Atmosphere 3135 m 5612 m ~ 13000 m H 2 O is the main absorber
5
Detection of CF + toward the Orion Bar CF + J = 3 – 2 APEX CF + J = 2 – 1 IRAM 30m CF + J = 1 – 0 IRAM 30m D. A. Neufeld et al., Astron. Astrophys. 454 (2006) L37 Rest frequencies required for line identification ! Also for extragalactic CO observations !
6
CDMS Main Page Please bookmark as http://www.astro.uni-koeln.de/cdms/ Short-cut to CDMS main page: www.cdms.de
7
CDMS catalog: basic facts line lists of rotational spectra for molecules of interest in space Hamiltonian model based on experimental data 520 different species; 242 detected in ISM or CSE separate entries for isotopologues and vibrational states ~ 1000 users each month included in many advanced astronomy tools, e.g. for Herschel ~ 5−10 new entries each month
8
General
9
Entries Species tag.: mw5# Name/FormulaDocumentation MHz Entry cm –1
10
Entries Based on Laboratory Data, e. g., CO, v = 1 Important: appropriate uncertainties J"frequencyunc.o–c 1228439.07425–27 2342647.63620–6 3456842.977104 4571020.67712–12 5685176.39252 6799305.677104 7913404.1365–1 151824554.59510–0 161938177.832100 B57111.24312 (66) D × 10 3 183.4903 (71) H × 10 9 177.9 (145) The Data The Spectroscopic Parameters R. Gendriesch et al., A&A 497 (2009) 927
11
Issues Around Experimental Uncertainties The 12th commandment: Thou shalt not scale your parameter uncertainties with the rms error. − reasons for rms error < 1: small data set; systematic errors (calibration); etc. − reasons for rms error > 1: wrong model, e.g. missing parameter; etc. Measure calibration lines if you are uncertain how well you can do. − Lab: CO, H 2 CO, CH 3 CCH, CH 3 CN, OCS, SO 2, etc. − Astro: dito, (CCH soon), HCN, HCO +, N 2 H +, HC 3 N, HC 5 N, etc.
12
CO entry Explanations with link to further detailsFrequency (MHz)Uncertainty (MHz)E lower (cm –1 )g up Species tagQuantum numbersIntensity (nm 2 MHz)
13
Example for a documentation Lots of information on entry: source of data information on molecule caveat(s) links to special data (hfs) etc.
14
search (default)
15
Graphic Output for SO 2 at 150 K
16
What’s New
17
Molecules in Space
18
H 3 + in ISM
19
fitting spectra
20
examples
21
Other Databases JPL catalog: http://spec.jpl.nasa.gov/http://spec.jpl.nasa.gov/ atmospheric and astrophysical species; WH09, B. J. Drouin & J. C. Pearson HITRAN: http://www.cfa.harvard.edu/HITRAN/http://www.cfa.harvard.edu/HITRAN/ atmospheric species; RI01, L. S. Rothman & I. E. Gordon NIST Rec. Rest Frequencies: http://physics.nist.gov/cgi-bin/micro/table5/start.plhttp://physics.nist.gov/cgi-bin/micro/table5/start.pl astrophysical species, observed lines only (F. J. Lovas); peculiar uncertainties SLAIM: F. J. Lovas’ extension of NIST RRF; via splatalogue; peculiar uncertainties
22
Examples for 3rd Level Resources CASSIS: http://www.cesr.fr/~walters/web_cassis/http://www.cesr.fr/~walters/web_cassis/ Adam Walters et al.; CDMS + JPL + astro tools splatalogue: http://www.splatalogue.net/http://www.splatalogue.net/ under construction; CDMS, JPL, NIST RRF, SLAIM, Recomb. often many options for one species The 3rd level needs the 2nd and 1st as the 2nd needs the 1st (the original lab work). Note: Consolidation is not always a simple task ! Newest entry ? Most experimental data ? Highest quantum numbers or frequencies ?
23
Considerations for Herschel and SOFIA
24
Molecular Lines at Terahertz Frequencies atmospheric transmission / % CSO line survey of Orion-KL, C. Comito et al, ApJS 156 (2005) 127 167
25
Detail of the Interstellar Carbon Cycle CH 3 + CH 2 + HCO + CH 2 CH C CO CH + C+C+ CO + millimeter lines (>) submillimeter lines terahertz lines H2H2 H2H2 H H H e e e e e, ν e H3+H3+ ν ν ν ν H, ν OH O He + O2O2 e, S H2H2 H 2, H 2 * H2*H2* ν, C + OH adopted from Sternberg & Dalgarno, 1995
26
Probing Cold CH 2 in the THz Region toward Sgr B2 E. T. Polehampton et al., A&A 431 (2005) 203 (analyzing ISO data) CH 2 Π ½, J = 1.5 – 0.5 @ 2.011 THz o-CH 2, 1 11 – 0 00 @ 2.349 THz p-CH 2, 2 12 – 1 01 @ 2.783 THz o-CH 2, 3 13 – 2 02 @ 3.201 THz
27
Detection of 13 CH + J = 1 − 0 toward G10.6−0.4 with the CSO E. Falgarone et al., ApJ 634 (2005) L149 CH 3 OH 13 CH + no accurate 13 CH + lab data no kinematic information
28
CO, J = 13 − 12 @ 1.497 THz, Detected with APEX Hot core in OMC-1 near or at interface between HII and compact mol. gas Hot gas component (300 – 500K) at vertex of system of outflows. CO 13 12 M. C. Wiedner et al., A&A 454 (2006) L33
29
Light Hydride Species AH n in the CDMS Catalog H 2 D +, HD 2 +, HeH +, NeH +, ArH + BH, CH, CH +, CH 2, CH 2 D +, CH 3 D, 13 CH 3 D NH, ND, NH 2, NH 3, OH +, OH −, D 2 O, H 3 O +, H 2 DO + PH, PH 2, PH 3, SH −, SH +, H 2 S NaH, MgH, KH, CuH, ZnH plus more to come detected in ISM/CSE; several isotopologs
30
(Possible) Data Needs desired species: CH +, 13 CH +, CD + ! 13 CH 2, CHD CH 2 +, NH 2 +, H 2 O + ? (interfering) species: CH 3 OH isotopologs other "weeds" mostly as for ALMA mostly v = 0 & main isotopolog maybe higher frequencies on occasion
31
Considerations for ALMA
32
The Purported Detection of Glycine Sgr B2(N-LMH) Orion-KL W51 e1/e2 Kuan et al., ApJ 593 (2005) 848; (plus other lines)
33
Problems with the Purported Glycine Detection many line overlaps; e.g. 206468 (left line) with CH 3 CH 2 CN, v 13 = 1 a 240899 (right line) with CH 3 13 CH 2 CN b many lines are "missing" (too weak) purported abundances too high a) Snyder et al., ApJ 619 (2005) 914; adopted from Nummelin et al. ApJS 117 (1998) 427 b) HSPM, CDMS Sgr B2(N-LMH)
34
A Solution for Single Dish Radio Telescopes Unbiased Molecular Line Surveys in large frequency windows
35
Detection of a Complex Organic Molecule: Aminoacetonitrile H 2 NCH 2 CN (a likely precursor of glycine, H 2 NCH 2 COOH) A. Belloche et al., Astron. Astrophys. 482 (2008) 179 IRAM 30m PdBI, ATCA
36
C 2 H 3 CN, v = 0, + 13 C, + 15 N H. S. P. Müller et al., J. Mol. Spectrosc. 251 (2008) 319 Detection of 13 C-Vinyl Cyanide
37
HNCO in Sgr B2(N) v = 0, v 5 = 1 (831 K), v 6 = 1 (944 K), v 4 = 1 (1117 K) previously in G10.47+0.03: Wyrowski et al; A&A 381 (1999) 882
38
The Blessing and the Curse of ALMA very high sensitivity & very high spatial resolution much rarer species may be seen e.g. more complex molecules...... but interfering species as well ! (Weeds; molecules with many lines in star-forming region.)
39
The Weeds Issue Examples: CH 3 OH, CH 3 CN, C 2 H 3 CN, C 2 H 5 CN, HC 3 N, CH 3 OCH 3, CH 3 C(O)CH 3, CH 3 OCHO, SO 2 − main isotopolog, v = 0 generally in good or fairly good shape − minor isotopologs, v = 0 good or reasonable for several species; more data to come − main isotopolog, excited states good or reasonable for some species; more data to come; tedious, but important: C 2 H 5 CN − minor isotopologs, exited states in good shape only rarely; data probably needed for some species, especially 13 C
40
Acknowledgments DFG (Deutsche Forschungsgemeinschaft) → 2006 BMBF (Bundesministerium für Bildung und Forschung) (for Herschel/HIFI) Spectroscopists for measurements and providing data Astronomers for suggestions and comments on the CDMS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.