Presentation is loading. Please wait.

Presentation is loading. Please wait.

 광합성 (photosynthesis)  H 2 O + CO 2  (h   (CH 2 O) + O 2 ▪686 kcal/mole needed for glucose synthesis ▪114 kcal/mole for CO 2 fix ▪10 17 kcal stored.

Similar presentations


Presentation on theme: " 광합성 (photosynthesis)  H 2 O + CO 2  (h   (CH 2 O) + O 2 ▪686 kcal/mole needed for glucose synthesis ▪114 kcal/mole for CO 2 fix ▪10 17 kcal stored."— Presentation transcript:

1  광합성 (photosynthesis)  H 2 O + CO 2  (h   (CH 2 O) + O 2 ▪686 kcal/mole needed for glucose synthesis ▪114 kcal/mole for CO 2 fix ▪10 17 kcal stored annually ▪10 10 tons C stored  chlorophyll  carotenoids

2 http://en.wikipedia.org/wiki/Photosynthesis Photosynthesis changes sunlight into chemical energy, splits water to liberate O2, and fixes CO2 into sugar

3 http://en.wikipedia.org/wiki/Photosynthesis Chloroplast ultrastructure: 1. outer membrane 2. intermembrane space 3. inner membrane (1+2+3: envelope) 4. stroma (aqueous fluid) 5. thylakoid lumen (inside of thylakoid) 6. thylakoid membrane 7. granum (stack of thylakoids) 8. thylakoid (lamella) 9. starch 10. ribosome 11. plastidial DNA 12. plastoglobule (drop of lipids)

4 http://en.wikipedia.org/wiki/Photosynthesis Light-dependent reactions of photosynthesis at the thylakoid membrane

5 http://en.wikipedia.org/wiki/Photosynthesis Overview of the Calvin cycle and carbon fixation

6  화학합성 (chemosynthesis)  Hydrogen sulfide chemosynthesis  12H 2 S + 6CO 2 → C 6 H 12 O 6 + 6H 2 O + 12S  97 kcal/mole for glucose synthesis  16kcal/mole for CO 2 fix  Chlorobrium  Thiosprillum http://genome.jgi-psf.org/chlpb/chlpb.home.html http://www.google.co.kr/url?sa=i&rct= j&q=&esrc=s&frm=1&source=images &cd=&ved=0CAMQjxw&url=http%3 A%2F%2Fwww.mokkka.hu%2Fdrupal %2Fen%2Fnode%2F2855&ei=pa8TVe PzMeK2mAWL-ICgAQ&bvm=bv.892 17033,d.dGY&psig=AFQjCNEG-LDq FFe1QA8-HK9Nh9NYl2SUUg&ust=1 427439842149408&cad=rjt

7  Productivity  Rain forest: 1-2 kg C/m 2 yr  Tundra forest: 0.1 kg C/m 2 yr  Ocean: 1.5 – 7.0 * 10 10 metric ton/yr  Land: 1.4 -7.8 * 10 10 metric ton/yr (more C org is stored than in ocean, but the productivity is about the same)  Total biomass C org = 30 – 300 10 10 tons

8 Figure 6. Global biogeochemical cycle of carbon as carbon dioxide. Rates or fluxes (denoted by arrows) between land, ocean, and atmosphere reservoirs a re in millions of metric tons of carbon (MTC) per year. The reservoir size of carbon dioxide is in millions of tons of carbon. The “Missing” is the amount of global CO2 emissions taken up by the ocean and terrestrial realms. The re lative amount of “Missing” uptake by ocean and terrestrial realm, split evenl y in this representation, is still debated although it appears now that the terre strial realm is a slightly bigger sink for the excess CO2. http://www.soest.hawaii.edu/mguidry/Unnamed_Site_2/Chapter%202/Chapter2C.html

9  Photic zone  soluble organic matter 89%  Particulate 9%  phytoplankton 2%  zooplankton, fish 0.002%  phytoplanktons: diatoms, cocolithophores, dinoflagellates, botryococcus, etc.  zooplanktons: coral pods, radiolarias, foraminifera, etc.

10 http://wps.pearsoncustom.com/wps/media/objects/5697/5834441/ebook/htm/0cc6e.htm?34.06

11 Fig.A4 Change of light intensity and tropical carbonate production with water depth. http://lib.znate.ru/docs/index-35098.html

12 Plots of typical water properties in the open ocean. The thermocline is where the temperature changes rapidly, the halocline is where the salinity changes rapidly and the pycnocline is where the density changes rapidly. UCAR – Windows to the Universe. http://www.hurricanescience.org/science/basic/water/

13 https://scripps.ucsd.edu/expeditions/mist/2014/01/18/casting-about/

14  Comparison of OM Aquatic (Marine & Lacustrine) Terrestrial 1. LipidsImportant (≤20%)Minor (seeds, fruits, pollen, spores, cuticles on leaves) 2. LigninAbsentMajor (>5-30%) 3. CelluloseAbsentMajor (50-60%) 4. ProteinMajor (<50%)≤10% 5. CarbohydratesImportant (variable)Variable 6. H/C1.7 – 1.91.3 - 1.5 (land plants) 7.   C 5‰ heavier

15  Chemical Composition of Biomass  n-Alkanes  Carbon preference index (CPI)  Land plant: mainly odd, C 23 -C 33  Trophic dependence EutrophicMesotrophicOligotrophic nC 17 nC 17, nC 24-31 nC 27 -C 31 CPI=2-4CPI=2-5,6CPI=5±

16  ** Composition of OM in sediments determined by **  Influx of allochthonous OM  Autochthonous produdction  Diagenesis (thermal, biological influence)  Preservation (some shows selectivity) http://www.scielo.org.mx/scielo.php?pid=S1026-87742012000300015&script=sci_arttext

17  ** Pristane/phytane ratio **  biomarker parameter for the assessment of redox conditions during sediment accumulation http://www.igiltd.com/ig.NET%20Sample%20Pages/264.html The ratios of phytanic acid to phytol (plus dihydrophytol) in Dead Sea sediments were 4.7 and 5.5 in two oxidizing environments and 1.1 and 3.4 in two reducing environments (Nissenbaum, A., Baedecker, M. J., and Kaplan, I. R., Geochim. Cosmochim. Acta, 36, 709 (1972).

18  Fatty acids  R-COOH  R: higher plant > C 20, bacteria, plankton C 12-22 http://courses.washington.edu/conj/membrane/fattyacids.htm

19 Common nameChemical structureΔxΔx C:DC:Dn−xn−x Myristoleic acidCH 3 (CH 2 ) 3 CH=CH(CH 2 ) 7 COOHcis-Δ 9 14:1n−5 Palmitoleic acidCH 3 (CH 2 ) 5 CH=CH(CH 2 ) 7 COOHcis-Δ 9 16:1n−7 Sapienic acidCH 3 (CH 2 ) 8 CH=CH(CH 2 ) 4 COOHcis-Δ 6 16:1n−10 Oleic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COOHcis-Δ 9 18:1n−9 Elaidic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COOHtrans-Δ 9 18:1n−9 Vaccenic acidCH 3 (CH 2 ) 5 CH=CH(CH 2 ) 9 COOHtrans-Δ 11 18:1n−7 Linoleic acidCH 3 (CH 2 ) 4 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHcis,cis-Δ 9,Δ 12 18:2n−6 Linoelaidic acidCH 3 (CH 2 ) 4 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHtrans,trans-Δ 9,Δ 12 18:2n−6 α-Linolenic acidCH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2 ) 7 COOHcis,cis,cis-Δ 9,Δ 12,Δ 15 18:3n−3 Arachidonic acid CH 3 (CH 2 ) 4 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CH (CH 2 ) 3 COOH NIST NIST cis,cis,cis,cis-Δ 5 Δ 8,Δ 11,Δ 1 4 20:4n−6 Eicosapentaenoic acid CH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CHC H 2 CH=CH(CH 2 ) 3 COOH cis,cis,cis,cis,cis-Δ 5,Δ 8,Δ 1 1,Δ 14,Δ 17 20:5n−3 Erucic acidCH 3 (CH 2 ) 7 CH=CH(CH 2 ) 11 COOHcis-Δ 13 22:1n−9 Docosahexaenoic acid CH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CHC H 2 CH=CHCH 2 CH=CH(CH 2 ) 2 COOH cis,cis,cis,cis,cis,cis-Δ 4,Δ 7,Δ 10,Δ 13,Δ 16,Δ 19 22:6n−3 Examples of Unsaturated Fatty Acids

20 Common nameChemical structureC:DC:D Caprylic acidCH 3 (CH 2 ) 6 COOH8:0 Capric acidCH 3 (CH 2 ) 8 COOH10:0 Lauric acidCH 3 (CH 2 ) 10 COOH12:0 Myristic acidCH 3 (CH 2 ) 12 COOH14:0 Palmitic acidCH 3 (CH 2 ) 14 COOH16:0 Stearic acidCH 3 (CH 2 ) 16 COOH18:0 Arachidic acidCH 3 (CH 2 ) 18 COOH20:0 Behenic acidCH 3 (CH 2 ) 20 COOH22:0 Lignoceric acidCH 3 (CH 2 ) 22 COOH24:0 Cerotic acidCH 3 (CH 2 ) 24 COOH26 Examples of Saturated Fatty Acids

21  Sterane  Land plants: C 28, C 29 dominant  Phyto-, zooplankton: C 29 dominant  Sterols  sterane (by reduction) http://www.scielo.org.co/scielo.php?pid=S1794-61902014000100007& script=sci_arttext&tlng=en http://aapgbull.geoscienceworld.org/content/95/7/125 7.figures-only Problems: thermal effect, gradual boundary

22 A ternary diagram illustrating compositional variations and affinities of all twenty solvent extract samples using the relative abundance of C27- C28-C29 regular steranes from the m/z 218 mass fragmentogram data (Fig. 6 ⇑, Table 2 ⇑ ). The three oil families are identified using the symbols following Figure 2 ⇑. The empirically drawn dividing line between marine and non-marine sourced crude oils follows previous work (Peters and Moldown, 1993). http://bcpg.geoscienceworld.org/content/55/4/285/F7.expansion.html

23  Sterane  Land plants: C 28, C 29 dominant  Phyto-, zooplankton: C 29 dominant  Sterols  sterane (by reduction) http://www.scielo.org.co/scielo.php?pid=S1794-61902014000100007& script=sci_arttext&tlng=en http://aapgbull.geoscienceworld.org/content/95/7/125 7.figures-only Problems: thermal effect, gradual boundary


Download ppt " 광합성 (photosynthesis)  H 2 O + CO 2  (h   (CH 2 O) + O 2 ▪686 kcal/mole needed for glucose synthesis ▪114 kcal/mole for CO 2 fix ▪10 17 kcal stored."

Similar presentations


Ads by Google