Presentation is loading. Please wait.

Presentation is loading. Please wait.

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.

Similar presentations


Presentation on theme: "Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model."— Presentation transcript:

1

2

3 Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model Precision Experiment Fundamental Constants Related Experiments Interpretation Future Possibilities

4

5

6

7 QED - Contributions: Weak Interaction Corrections: a  (QED) = 116 584 705.6(2.9) * 10 -11 (Kinoshita 2000)  a  (weak) = 151(4) * 10 -11 (Kutho 1992, Degrassi 1998) 

8

9 QED - Contributions: Weak Interaction Corrections: a  (QED) = 116 584 705.6(2.9) * 10 -11 (Kinoshita 2000)  a  (weak) = 151(4) * 10 -11 (Kutho 1992, Degrassi 1998) 

10 minor error in calculations

11 The new measurement of the muon magnetic anomaly at the Brookhaven National Laboratory aims for 0.35 ppm relative accuracy. Why? We have in the listing of fundamental physical constants: electron magnetic anomaly 1.159 652 186 9(41) 10 -3 (0.0035 ppm) muon magnetic anomaly 1.165 916 02(64) x 10 -3 (0.55 ppm) Sensitivity to heavier objects larger by (m  /m e ) 2  40 000

12

13 Hadronic Corrections for g  -2  a   hadr.,1 st order) = 6951(75)  10 -11 (Davier, 1998)  a   hadr., higher order) = -101(6)  10 -11 (Krause, 1996)  a   hadr., light on light) = -79(15)  10 -11 (Hayakawa, 1998) !! Situation Spring 2001

14 Early “Shopping List”

15

16

17

18

19

20

21 The fixed probes 4 ppm Proton NMR

22 Electronics inside the trolley The NMR-Trolley 17 probes - Proton NMR in water

23 Electrostatic Quadrupole Electrodes NMR Trolley Rails Fixed NMR Probes Trolley NMR Probes Vacuum Vessel

24

25 900 000 000 positrons with E > 2GeV in 1999

26

27 Systematic Uncertainties, Results Magnetic Field  p,0 spherical probe 0.05 ppm  p (R,t i ) 17 trolley probes 0.22 ppm  p (R,t) 150 fixed probes 0.15 ppm  p (R) aging -  p (R I ) inflector fringe field 0.20 ppm <  p  muon distribution 0.12 ppm  total systematic uncertainty  p =0.4 ppm  Spin Precession Pileup 0.13 ppm AGS background 0.10 ppm Lost muons 0.10 ppm Timing Shifts 0.10 ppm E field and vertical CBO 0.08 ppm Binning and Fitting procedure 0.07 ppm Coherent Betatron Oscillations 0.05 ppm beam debunching 0.04 ppm Gain Instability 0.02 ppm total systematic uncertainty  a,sy = 0.25 ppm total statistical uncertainty  a,st = 1.25 ppm  p /2  = 61 791 256 (25) Hz  a /2  = 229 072.8 (0.3) Hz

28 QED mm  g-2 hadronic contribution weak contribution New Physics  + e -  HFS, n=1  QED corrections weak contribution  + e -  1S-2S m  QED corrections QED mm  , , g  h

29 a  = a m ca m c e  B = aa pp aa pp  pp - Experiment: Theory: * need  for muon ! * hadronic and weak corrections * various experimental sources of  better 100ppb>  need constants at very moderate *  no concern for (g-2)  accuracy *  a and B (  p ) measured in (g-2)  experiment * c is a defined quantity * m  (   ) is measured in muonium spectroscopy (hfs) NEW 1999 * e  is measured in muonium spectroscopy (1s -2s) NEW 1999 *  p in water known >> probe shape dependence *  3He to  p in water >> gas has no shape effect being improved

30 Muonium Hyperfine Structure Solenoid   e    in SS Detector MW-Resonator Yale - Heidelberg - Los Alamos  exp = 4 463 302 765(53) Hz ( 12 ppb)  theo = 4 463 302 649(520)(34)(<100) Hz(<120 ppb)    p = 3.183 345 13(39) (120 ppb) m   m e = 206.768 273(24) (120 ppb)   = 137.036 010 8(5 2) ( 39 ppb) W. Liu et al. Phys. Rev. Lett. 82, 711 (1999)

31 Muonium 1S-2S Experiment Laser Diagnostics   Detection -.25 R  1S 2S 244 nm Energy -R  0    e   kin   in  ee Target Mirror Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale  1s-2s = 2455 528 941.0(9.1)(3.7) MHz  1s-2s = 2455 528 935.4(1.4) MHz m    = 206.768 38 (17) m e q     = [ -1 -1.1 (2.1) 10 -9 ] q e- exp theo V.Meyer et al., Phys.Rev.Lett. 84, 1136 (2000)

32

33 2.6  deviation

34 Possible Explanations for  a  a  (exp) and a  (latest theory) differ by 42(16) *10 -10 The probability for agreement is < 1% Statistical Fluctuation Undiscovered Error in Experiment (not recognized systematics) Not yet complete standard theory calculation (hadronic contribution) New Physics 4 times more data on tape & data for  - being taken

35

36 Courtesy of W. Kluge, Karlsruhe (Summer 2001) About 1 year’s data needed

37 Hadronic Corrections for g  -2  a   hadr.,1 st order) = 6951(75)  10 -11 (Davier, 1998)  a   hadr., higher order) = -101(6)  10 -11 (Krause, 1996)  a   hadr., light on light) = -79(15)  10 -11 (Hayakawa, 1998) !! ??SIGN ??

38 Muon Magnetic Anomaly in Super Symmetric Models approximate rule :  a  SUSY  1.4    [ (100 GeV/c 2 ) /m g ] 2  tan  goal BNL 821: a  to 0.4   after: U. Chattopadyay and P. Nath, 1995 A t, m 0 vary over parameter space m 0 < 1TeV/c 2 no constraints from dark matter constraint through dark matter     w    w           k ~   k   k ~

39

40 Note: Even if there will be a difference between muon g-2 and theory established and unquestioned, it does not carry a tag about the nature of the difference! We will need further experiments then to learn more! Such as: - searches for rare muon decays - search for a muon edm -..............................

41  e  appears in composite models if  a  as suggested

42 Concept works also for (certain) nuclei; GSI could start right now Exploit huge motional electric fields for relativistic particles in high magnetic fields; observe spin rotation EDM closely related to non standard anomaly in many models!

43 CERN Neutrino Factory baseline scenario (target muon budget) 4 MW 2.2ms/13.3ms 3.3  s (144b of 3ns) 10 16 p/s 1.210 14  s =1.2 10 21  yr 0.9 10 21  yr 3 10 20 e  yr 3 10 20   yr 3 10 20 e  yr 3 10 20   yr 10 20 e  yr 10 20   yr (© A. Blondel) Similar Bright Possibilities at almost any High Power Proton Facility, e.g. - ESS - GSI (?) - JHF Don’t Mi(e)ss It! Future Possibilities

44

45

46

47 SPARES

48

49

50 Neutrino Factory @ CERN Possibly Interesting experiments High Intensity Low Energy Muon Experiments (targets!) rare decays    e +     e     e + e  e + > Lepton number muonium - antimuonium conversion > Lepton number “normal” muon decay > G F muon magnetic anomaly > g-2, a  muon edm > d  muon parameters > m ,  ,  muonic atoms > r p, g p  CF Next Generation ISOLDE Experiments radioactive muonic atoms > r n, r p nuclear structure of short lived nucleids > r n, r p nuclear structure far off valley of stability > r n, r p muon capture Neutrino Experiments long baseline short baseline charm Production NC/CC > m w (10-20 MeV) and sin 2 q w eff (2.10 -4) Kaon Experiments ( >> 15 GeV postaccelerator ) K Jungmann 18-Apr-2001

51 Muon Experiments Possible at a CERN Neutrino Factory - Expected Improvements K Jungmann 18-Apr-2001

52 < < < < Muon Experiments possible at a CERN Neutrino Factory - Required Beam Parameters K Jungmann 18-Apr-2001


Download ppt "Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model."

Similar presentations


Ads by Google