Download presentation
Presentation is loading. Please wait.
Published byJemima Johnson Modified over 9 years ago
1
Comparing with redshift surveys of galaxies
2
Redshift surveys –brief review CFA -----2000 galaxies (1983) Las Campanas ----25000 galaxies (1996) 2dF----250,000 galaxies (2003) SDSS----900,000 galaxies (2008?)
3
The role of different observations
7
Clustering and environment analysis The key is to account for the incompleteness correctly For example, two-point correlation function is measured very simply with DD(r)/RR(r)- 1, where DD and RR are the number of pairs of galaxies in the observed sample and in the random sample respectively; The key is to construct the random sample correctly
8
Incompleteness or selection effects Magnitude limited sample----radial selection effect; Limiting magnitude variation (0.1 typically) across the survey region; Survey boundary; Redshift measurement completeness; –Sampling rate; –Magnitude dependent redshift incompleteness –Fiber collision
12
Random sample A sample of the points randomly distributed spatially but with the same observational selection effects
13
光度函数: – 单位体积、单位光度间隔内 的星系平均数目 –Schechter function: 两点相关函数: – 与均匀随机场相比,在距离 某个星系 r 处发现另一个星 系的额外几率 相对速度弥散: 背 景 介 绍背 景 介 绍 统计量
14
红移空间畸变: 本征运动使星系看起来偏离膨胀背景 红移空间 2PCF : 沿视向,大尺度压扁,小尺度拉伸 背 景 介 绍背 景 介 绍 测量方法
15
背 景 介 绍背 景 介 绍
16
Redshift two-point correlation functions for DR2 (Li, C. et al. astroph/0509874; 0509873; see also Zehavi et al. 2005)
17
Dependence of CF on physical properties (Li et al. 2005a,b)
18
Luminosity dependence of the bias (r_p=2.7 Mpc/h; Zehavi et al. 2005) Stellar mass dependence (Li, et al 2005a,b) 星系成团的幅度,即 偏袒因子 b ,随光度 (上图)和恒星质量 (下图)的变化。
19
Velocity dispersion vs. physical properties (Li, C. et al. 2005b)
20
Velocity vs luminosity (Li, et al. 2005a,b)
21
Bimodal distribution in the color- magnitude diagram (SDSS)
22
Three ways of interpreting Halo Occupation Distribution (HOD) model (e.g. Jing et al. 1998; Yang et al 2003) Using galaxy formation models –Hydro/N-body simulations with star formation (physical processes; id of galaxies? e.g. V. Springel et al. 2005)Hydro/N-body simulations –Semi-analytical models of galaxy formation + N-body simulations (e.g. Kauffmann et al. 1999)
24
Physical processes of galaxy formation Formation of dark halos; gas shock heated; Gas cooled radiatively; Stars formed from cold gas; Massive stars short lived; form neutron stars and supernova explosions Explosions inject energy and metals into interstellar medium (hot+cold); heating and enrich---feedback effects Mergers of galaxies after their host halos merge; Black hole formation and its AGN feedback
27
Dark matter Galaxies: red for E; blue for spirals
28
理 论 比 较理 论 比 较 构建 SDSS 的模拟样本 SDSS DR4 L500 L100+L300
29
Agreement after the reduction of faint satellites
30
Subhalo resolved: the bimodal color-mag distribution is much better reproduced
31
Summary Main features of galaxies can be explained in current galaxy formation models; High precision modeling for galaxy formation is still challenging, for very complicated physical process
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.