Download presentation
Presentation is loading. Please wait.
1
BOOLEAN ALGEBRA Kamrul Ahsan Teacher of ICT @ITHS http://web.itu.edu.tr/~ahsan http://ahsan.bhaluka.net
2
Course Outline Boolean Algebra Relations Graphs Trees
3
Boolean Algebra Operation 1True 0False ∙ And +Or
4
Basic Law of Boolean Algebra 1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0 1 ∙ 1 = 1, 1 ∙ 0 = 0, 0 ∙ 1 = 0, 0 ∙ 0 = 0
5
Example 1 F (x, y) = x ∙ y
6
Example 2 F (x, y) = xy + z
7
Law of Boolean Algebra (1) x=x (1) Law of the double complement (2) Idempotent laws x + x=x x ∙ x =x
8
Law of Boolean Algebra (2) (3) Identity laws (4) Domination laws x + 1=1 x ∙ 0 =0 x + 0=x x ∙ 1 =x
9
Law of Boolean Algebra (3) (5) Commutative laws (6) Associative laws x + y=y + x x ∙ y = y ∙ x x + (y + z)= (x + y) + z x (yz) = (xy)z
10
Law of Boolean Algebra (4) (7) Distributive laws (8) De Morgan’s laws xy= x + y x + y = x ∙ y x + (yz)= (x + y)(x + z) x (y + z) = xy + xz
11
Law of Boolean Algebra (5) (9) Absorption laws (10) Unit property x + xy= x x (x + y) = x x. x= 0 (11) Zero property x + x= 1
12
Example: find Boolean expression Find Boolean expression that represent the functions F(x,y,z) and G(x,y,z) which are given in table F(x,y,z) = x y zG(x,y,z) = x y z + x y z
13
Example: find function expansion Find function expansion for the function F(x,y,z) = (x + y) z and determine the function F(x,y,z)=(x + y) z =x z + y z =x 1 z + 1 y z =x (y + y) z + (x + x) y z =xy z + x y z + xy z + xy z Distributive law Identity law Unit property Distributive law Idempotent law
14
Logic Gates AND gate Inverter OR gate x y x y x xy x + y xx
15
Combination of Gate (1) xy + xz x + xy x y xy xy + xz z xz x y x + xy xy x
16
Combination of Gate (2) x y x xx y xy xy xy + xy x y xx xy xy xy + xy
17
Example: combination of gate (x + y) x x (y + z) (x + y + z) x y z xy + xz + yz xy + x y xyz + x y z + x y z + x y z
18
Minimization of Circuits using laws (1) xyz + x y z=(y + y)(xz) =1 ∙ xz =xz x + x=(x + x) ∙ 1 =(x + x) ∙ (x + x) =x + (x + x) =x + 0 =x
19
Minimization of Circuits using laws (2) x + xy=x ∙ 1 + xy =x (1 + y) =x (y + 1) =x ∙ 1 =x x + 1=(x + 1) ∙ 1 =(x + 1) ∙ (x + x) =x + 1 ∙ x =x + x =1 Identity laws Distributive laws Commutative laws Domination laws Identity laws Unit property Distributive laws Identity laws Unit property
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.