Download presentation
Presentation is loading. Please wait.
Published byOscar Mathews Modified over 9 years ago
1
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 1 Class 8 - Recursive Pictures r Recursively-defined curves r The Hilbert curve
2
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 2 Recursive drawings r Many shapes are “self-similar” - their overall structure is repeated in sub-pictures. r Peano curve:
3
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 3 Recursive drawings (cont.) “Koch snowflake”:
4
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 4 Recursive drawings (cont.)
5
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 5 The Hilbert Curve r Created by David Hilbert (1862-1943), this is a “space-filling” curve. r Hilbert curve of order n is constructed from four copies of the Hilbert curve of order n-1, properly oriented and connected.
6
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 6 Hilbert curves of order 1 & 2 HC(1): HC(2):
7
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 7 Hilbert curve of order 3 HC(3):
8
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 8 Hilbert curve of order 4
9
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 9 Hilbert curve of order 5
10
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 10 The Hilbert Curve Pattern Hilbert curves have “open” side on left: Form H.C. of order n by combining four copies of H.C. of order n-1, plus three connecting lines (of length sl): n-1
11
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 11 Recursive definition of H.C. This leads to the basic recursive pattern for defining HC(order, sl): int diam = size of HC of order n-1; hcsub1 = HC(order-1, sl); hcul = rotate hcsub1 by -90 degrees; hcur = translate hcsub1 to (diam+sl, 0); hclr = translate hcsub1 to (diam+sl, diam+sl); hcll = rotate hcsub1 by 90 degrees, then translate to (0, diam+sl); hc = append(hcul, append(hcur, append(hclr, hcll))); return hc, with three lines added;
12
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 12 Translation We have already seen how to translate a LineList: static LineList translate (LineList L, int x, int y) { if (L.empty()) return L; else { Line ln = L.hd(); Line transLine = new Line(ln.x0()+x, ln.y0()+y, ln.x1()+x, ln.y1()+y); return LL.cons(transLine, translate(L.tl(), x, y)); }
13
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 13 Rotation Rotation is more complicated. Consider rotating one point around the origin by angle : 1. Calculate m and m = x 2 +y 2 = tan -1 (y/x) 2. = + 3. (x’,y’) = point of length m, at angle (x,y) (x’,y’)
14
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 14 Rotation (cont.) We’ll rotate shapes (i.e. LineList’s) about the origin by rotating each line: static LineList rotateShapeAboutOrigin (LineList L, double theta) { if (L.empty()) return LL.nil; else return LL.cons(rotateLine(L.hd(), theta), rotateShapeAboutOrigin(L.tl(), theta)); }
15
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 15 Rotation (cont.) Rotating individual lines around the origin is a matter of rotating both endpoints, as we have indicated. Some added complexity comes from two factors: Math.atan returns angles in the range - /2 to /2 (i.e. only angles in the right half-plane) m The graphics coordinate system is “upside- down” relative to ordinary Cartesian coordinates.
16
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 16 Rotation (cont.) static Line rotateLine (Line ln, double theta) { int x0 = ln.x0(), y0 = -ln.y0(), // turn coordinates rightside-up x1 = ln.x1(), y1 = -ln.y1(); // turn coordinates rightside-up double currangle0 = Math.atan((double)y0/x0); double newangle0 = currangle0+theta; if (x0<0) newangle0 = newangle0 + Math.PI; double mag0 = Math.sqrt(x0*x0+y0*y0); int newx0 = (int)Math.round(mag0*Math.cos(newangle0)); int newy0 = -(int)Math.round(mag0*Math.sin(newangle0));
17
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 17 Rotation (cont.) double currangle1 = Math.atan((double)y1/x1); double newangle1 = currangle1+theta; if (x1<0) newangle1 = newangle1 + Math.PI; double mag1 = Math.sqrt(x1*x1+y1*y1); int newx1 = (int)Math.round(mag1*Math.cos(newangle1)); int newy1 = -(int)Math.round(mag1*Math.sin(newangle1)); return new Line(newx0,newy0,newx1,newy1); }
18
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 18 Rotation (cont.) One remaining technicality: when we say “rotate a shape”, we usually mean, “rotate it around its center”. However, so far we know only how to rotate a shape around the origin. The rotateShape method takes a shape and an angle and a point (x,y) which is taken to be the center of the shape.
19
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 19 Rotation (cont.) static LineList rotateShape (LineList L, double theta, int x, int y) { LineList transL = translate(L, -x, -y); LineList rotateL = rotateShapeAboutOrigin(transL, theta); return translate(rotateL, x, y); } It does so by translating the shape, then rotating, then translating back:
20
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 20 The Hilbert Curve int diam = size of HC of order n-1; hcsub1 = HC(order-1, sl); hcul = rotate hcsub1 by -90 degrees; hcur = translate hcsub1 to (diam+sl, 0); hclr = translate hcsub1 to (diam+sl, diam+sl); hcll = rotate hcsub1 by 90 degrees, then translate to (0, diam+sl); hc = append(hcul, append(hcur, append(hclr, hcll))); return hc, with three lines added; Recall again the abstract version of HC(order, sl):
21
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 21 Hilbert Curve (cont.) We can now say that the rotation steps should rotate the shape around the center of the Hilbert curve of order n-1. That center is at ( diam /2, diam /2). How do we calculate diam ? A review of the Hilbert curve of various orders show that HC(n-1) has diameter ( 2 n-1 -1)*sl. This leads to our solution:
22
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 22 The HC Method static LineList HC (int order, int sl) { if (order == 1) return LL.cons(new Line(0,0,sl,0), LL.cons(new Line(sl,0,sl,sl), LL.cons(new Line(sl,sl,0,sl), LL.nil))); else { int diam = sl*(int)(Math.pow(2,order-1)-1); // diameter of HC(order-1) int radius = diam/2; LineList hcsub1 = HC(order-1, sl);
23
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 23 The HC Method (cont.) LineList hcul = rotateShape(hcsub1, -Math.PI/2, radius, radius); LineList hcur = translate(hcsub1, diam+sl, 0); LineList hclr = translate(hcsub1, diam+sl, diam+sl); LineList hcll = translate( rotateShape(hcsub1,Math.PI/2, radius, radius), 0, diam+sl); LineList hc = append(hcul, append(hcur, append(hclr, hcll)));
24
22/2/00 SEM107 © Kamin & Reddy Class 8 - Hilbert’s curve - 24 The HC Method (cont.) hc = LL.cons(new Line(diam,0,diam+sl,0), LL.cons(new Line(diam+sl,diam,diam+sl,diam+sl), LL.cons(new Line(diam+sl,2*diam+sl, diam,2*diam+sl), hc))); return hc; }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.