Download presentation
Presentation is loading. Please wait.
Published byKerrie Horton Modified over 9 years ago
1
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.0 Switching in an Enterprise Network Introducing Routing and Switching in the Enterprise – Chapter 3
2
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 2 Objectives Compare the types of switches used in an enterprise network. Explain how Spanning Tree Protocol prevents switching loops. Describe and configure VLANs on a Cisco switch. Describe and configure trunking and Inter-VLAN routing. Maintain VLANs in an enterprise network.
3
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 3 Introducing switching and network segmentation Topics: The reliance on switches in network design The switch as an adaptable Layer 2 device that moves traffic based on MAC addresses Content addressable memory (CAM) as the technology for maintaining the MAC address table The role of switches in micro-segmenting domains to a single port Multilayer switching that combines hardware-based switching and routing in the same device The two major methods for switching: store and forward, and cut-through The need for securing switches
4
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 4 Compare the Types of Switches Used in an Enterprise Network Switching and network segmentation Content addressable memory (CAM) Virtual circuits
5
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 5 Discussion 01 You have probably seen the advertisements for Internet service, “with up to a blazing-fast 12 Mbps” and then the fine print “Many factors affect speeds. Actual speeds may vary and are not guaranteed.” 2 Advertised network speeds reflect a “best case scenario”. Under some circumstances, wire speed represents the best-case scenario for a switched network. Wire speed represents the hypothetical maximum data transmission rate of a cable or other transmission medium. Wire speed is rarely achieved outside of a network device. CPU limitations, disk read/write overhead, or contention for resources can reduce the speed of transmission over a network. 3 2) Comcast. (2007). Comcast High Speed Internet. Retrieved on September 10, 2007 from http://www.comcast.com/highspeedoffer-s/?CMP=KNC 1TO1Q3GOOGLE30&s_kwcid=comcast%20internet|751518367. 3) http://en.wikipedia.org/wiki/Wire_speed
6
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 6 How do you find a MAC address? What other devices in this room also have MAC addresses? How do we discover the MAC addresses of other devices on the network?
7
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 7 What about CAM? DEF: A switch moves traffic based on MAC addresses. Each switch maintains a MAC address table in high- speed memory, called content addressable memory What makes CAM different from RAM? In RAM, the user (application) supplies a memory address and the RAM returns the data word stored at that address. CAM functions as the reverse of RAM. In CAM, the user supplies the data word and the CAM searches its memory to see if it has the data word. Thinking about network hardware, what kind of device might have CAM and what data might it contain?”
8
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 8 Investigations into CAM Why does it make sense to remove (delete) entries from the MAC address table if they are not used within a certain period of time? How does a switch handle a broadcast frame? Reflection #1, Investigations into CAM
9
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 9 Forward or Flood The larger the collision and broadcast domains the more likely that network traffic will be affected. Simply put – the more devices participating in a collision domain the more collisions occur. This is similar to what happens to drivers at a rotary or roundabout
10
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 10 Microsegmentation How does a switch process traffic differently than a hub?
11
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 11 ASICs Application-Specific Integrated Circuit Taking A Look At The Basics Of ASICs Smith, Michael. (June 1997) Application- Specific Integrated Circuits. Retrieved on September 16, 2007 from. ASICs can consolidate the work of many chips into a single, smaller, faster package, reducing manufacturing and support costs while boosting the speed of the device built with them. ASIC technology is now so advanced that many functions traditionally implemented in software can be migrated to ASICs.
12
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 12 Routing with a Level 3 Switch A Layer 3 switch is a high- performance device for network routing. Layer 3 switches actually differ very little from routers. A Layer 3 switch can support the same routing protocols as network routers do. Both inspect incoming packets and make dynamic routing decisions based on the source and destination addresses inside. Both types of boxes share a similar appearance
13
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 13 Complete Activity 3.1.1.5
14
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 14 Compare the Types of Switches Used in an Enterprise Network Hardware-based Layer 2 switching Software-based Layer-3 (multilayer) switching
15
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 15 Which is faster? Routing has become much faster and often finds a route to an unknown host faster than the techniques used by standard Layer 2 switches. Layer 2 switches have wire speed performance, and Layer 3 routers have higher latency. It would seem that switches should always be faster… hint - unknown host
16
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 16 Compare the Types of Switches Used in an Enterprise Network Store and forward switching Cut-through switching Fast-forward Fragment-free
17
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 17 Frame Forwarding Method
18
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 18 Today, most Cisco LAN switches rely on the store-and-forward method for switching.
19
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 19 Compare the Types of Switches Used in an Enterprise Network Switch physical security Switch access security Complete the lab in packet tracer
20
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 20 Redundancy in a Switched Network Redundancy is crucial in many areas of business and health care. Few people would want to undergo open-heart surgery if there was only one heart/lung machine keeping them alive while their heart was stopped, nor would a multi- national publicly traded company have only one set of financial records. Skydivers have reserve chutes in case the main chute does not open; amusement park rides have manual and automatic seatbelts on the same rides to protect against human error. Think of your favorite sports team. Does every player on the team get to participate on every play? Why is it important for a team to have ‘depth’ at certain positions?
21
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 21 Redundancy in a Switched Network Networks require redundancy as well. In the first quarter of 2007, Amazon.com generated a daily profit of $1.22 million per day, which equals $50,833 an hour or nearly a $1,000 a minute.¹ If the network goes down for an hour, once a week every week for a year, the total loss of profit is $2,643,316. Do you think that Amazon.com has redundant networks in place?
22
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 22 E-Bay example One company that did not, but now does, is eBay. “Prior to June 10, 1999, eBay experienced significant network failures and has since suffered additional outages, which together totaled more than 70 hours of outages in the first seven months of the year.¹ During the two day June crisis, eBay's stock crashed to $47 from $135, wiping out $5.7 billion of market capitalization, and dipped below $80 in early August before rising again to the $130 range.¹ Experts assessing the cause of the disaster cite eBay's failure to build redundant, scalable web architecture.”²
23
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 23 E-Bay example - references 1) CNN Money.com. (September 14, 2007). Amazon.com Inc. Retrieved on September 8, 2007 from http://money.cnn.com/quote/financials/financials.html?s ymb=AMZN. 2) Cuomo, Andrew. (n.d.). Online Brokerage Industry Report. Retrieved on September 8, 2007 from http://www.oag.state.ny.us/investors/1999_online_brok ers/points_reference.html. Reflection #2, Redundancy Failures
24
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 24 Explain How Spanning Tree Protocol Prevents Switching Loops Redundancy in network equipment Redundant network links Dangers of switching loops Broadcast storms
25
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 25 Lets get paid double-checks The module mentions the problems within the network caused by multiple frame transmissions. Imagine the real world problems caused by multiple frame transmissions – duplicate paychecks, duplicate invoices for the same purchase, online banking with duplicate deposits or withdrawals, stock market transactions, etc. It is not only wasted bandwidth or CPU time we have to be concerned with – it is the very real chance that important transactions may be duplicated if multiple frames are sent.” MAC database instability can also result from a switched loop network. Ask students, "What are the results of the MAC database being incorrect?"
26
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 26 Multiple transmissions
27
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 27 MAC Database Instability If two switches on the same network can cause so many problems is there any way to support redundancy?
28
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 28 Create a loop-free logical topology Potential loop detection and port blocking Redundancy without switching loops Explain How Spanning Tree Protocol Prevents Switching Loops
29
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 29 Explain How Spanning Tree Protocol Prevents Switching Loops Determining a root bridge Bridge ID (BID) Root ports, designated ports, and blocked ports
30
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 30 BPDUs BPDUs are frames that multicast every 2 seconds to all other switches. BPDUs contain information such as: Identity of the source switch Identity of the source port Cumulative cost of path to root bridge Value of aging timers Value of the hello timer
31
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 31 STP port states – 1- Blocking
32
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 32 STP port states – 2 - Listening
33
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 33 STP port states – 3 – Learning
34
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 34 STP port states – 4 - Forwarding A fifth state, disabled, indicates that the administrator has shut down the switch port.
35
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 35 Activity
36
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 36 Activity
37
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 37 Root Bridges Determining a root bridge Bridge ID (BID) Root ports, designated ports, and blocked ports
38
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 38 Selection of root bridge The root bridge does not need to be the most “powerful”; rather, it needs to be centrally located The root bridge is based on the lowest BID value. Since switches typically use the same default priority value, the switch with the lowest MAC address becomes the root bridge. We can force selection by changing the priority value.
39
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 39 Changing the priority to FIX the election To set priority: S3(config)#spanning-tree vlan 1 priority 4096 To restore priority to default: S3(config)#no spanning-tree vlan 1 priority
40
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 40 STP Recalculations take time If a link failure occurs, STP recalculates by: Changing some blocked ports to forwarding ports Changing some forwarding ports to blocked ports Forming a new STP tree to maintain the loop-free integrity of the network STP is not instantaneous This calculation and transition period takes about 30 to 50 seconds on each switch. During this recalculation, no user data passes through the recalculating ports.
41
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 41 How Spanning Tree Protocol Prevents Switching Loops STP recalculations Minimizing downtime PortFast UplinkFast BackboneFast
42
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 42 STP Enhancements STP PortFast causes an access port to enter the forwarding state immediately, bypassing the listening and learning states. Using PortFast on access ports that are connected to a single workstation or server allows those devices to connect to the network immediately, instead of waiting for STP to converge. STP UplinkFast accelerates the choice of a new root port when a link or switch fails or when STP reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would do with normal STP procedures.
43
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 43 STP Enhancements BackboneFast provides fast convergence after a spanning tree topology change occurs. It quickly restores backbone connectivity. BackboneFast is used at the Distribution and Core Layers, where multiple switches connect. Limitation of all three All the enhancements are Cisco proprietary. All the switches in the network must be running Cisco IOS
44
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 44 Discussion What type of host or server would you connect with PortFast? Could every host on a network be connected using PortFast? Could you connect another switch to a network using PortFast? Understanding and Configuring the Cisco Uplink Fast Feature, http://www.cisco.com/warp/public/473/51.htmlhttp://www.cisco.com/warp/public/473/51.html
45
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 45 How Spanning Tree Protocol Prevents Switching Loops Spanning-tree verification commands
46
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 46 Show spanning-tree commands show spanning-tree - Displays root ID, bridge ID, and port states show spanning-tree summary - Displays a summary of port states show spanning-tree root - Displays the status and configuration of the root bridge show spanning-tree detail - Displays detailed port information show spanning-tree interface - Displays STP interface status and configuration show spanning-tree blockedports - Displays blocked ports
47
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 47 Spanning tree poetry Algorhyme By Radia Perlman (Adapted from "Trees", by Joyce Kilmer) I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree which must be sure to span So packets can reach every LAN. First the Root must be selected By ID it is elected. Least cost paths from Root are traced In the tree these paths are placed. A mesh is made by folks like me Then bridges find a spanning tree.
48
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 48 RSTP Rapid Spanning Tree Protocol (RSTP), defined in IEEE 802.1w, significantly speeds the recalculation of the spanning tree. Unlike PortFast, UplinkFast, and BackboneFast, RSTP is not proprietary. RSTP requires a full-duplex, point-to-point connection between switches to achieve the highest reconfiguration speed. Reconfiguration of the spanning tree by RSTP occurs in less than 1 second, as compared to 50 seconds in STP.
49
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 49 RSTP RSTP eliminates the requirements for features such as PortFast and UplinkFast. RSTP can revert to STP to provide services for legacy equipment. To speed up the recalculation process, RSTP reduces the number of port states to three: discarding, learning and forwarding. The discarding state is similar to three of the original STP states: blocking, listening, and disabled. RSTP also introduces the concept of active topology. All ports that are not discarding are part of the active topology and will immediately transition to the forwarding state.
50
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 50 Explain How Spanning Tree Protocol Prevents Switching Loops Rapid Spanning Tree Protocol Discarding Active topology
51
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 51 Introducing VLANs Many of us belong to clubs in our schools, civic and/or religious organizations in our communities each of which has a need to be able to communicate with only 'their' members. Imagine that you are the Editor-in-Chief of the yearbook. You need to be able to communicate with the other members of the yearbook committee about an upcoming meeting. Would you rather send an email to every student in the school about this meeting, or be able to target just those members of the yearbook committee? The obvious answer, of course, is just those members of the yearbook committee.”
52
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 52 Introducing VLANs In schools where email is not used for communication with students, the usual default for notifying students about club meetings is “morning announcements.” Students tend to sit there, half listening, until an organization in which they are involved makes an announcement. This type of broadcast message can consume unnecessary time in the morning, while overloading students with too many broadcast messages, so many in fact that students may miss their own.
53
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 53 Introducing VLANs Networks function in much the same way. As networks grow and more devices are connected to a switch, more broadcast traffic is generated and more bandwidth is wasted on messages that are not relevant to all members of the organization. The solution is to create virtual local area networks (VLANs) that contain broadcasts and group hosts together in communities of interest. The result is that traffic is logically grouped, minimizing broadcast traffic and saving bandwidth.
54
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 54 Relection 3 Take a look at the way our school is organized. What departments, subjects, groups, or users should be together in a VLAN? Remember, one way to answer this question is to think about 'communities of interest’. Reflection #3, Communities of Interest
55
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 55 Describe and Configure VLANs on a Cisco Switch Virtual LANs Logical networks Broadcast control Transparent to end-users It allows an administrator to group together stations by logical function, by project teams, or by applications, without regard to physical location of the users.
56
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 56 Describe and Configure VLANs on a Cisco Switch VLAN functions VLAN membership Static (also called port based - widely deployed) Dynamic ( MAC based )
57
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 57 VMPS (VLAN Management Policy Server) Return to the VLAN network diagram for the four communities of interest, and prepare a table in Word that maps the MAC addresses to the appropriate VLAN. This table would be used if we were to use dynamic VLANs
58
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 58 Configure VLANs on a Cisco Switch VLAN 1: management VLAN VLAN numbers and names Port assignment
59
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 59 Configure VLANs on a Cisco Switch VLAN verification commands Deleting a VLAN Removing a port from a VLAN
60
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 60 This is a good place to take a break Monitoring VLANs Creating VLANs Introducing VLANs That was a Ton of new information!
61
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 61 Basic Switch Configuration
62
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 62 Config the Management Interface
63
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 63 Config the default gateway
64
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 64 Verify the configuration
65
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 65 Configure Duplex and Speed You used to be required to use certain cable types (cross-over, straight-through) when connecting between specific devices, switch-to- switch or switch-to-router. Instead, you can now use the mdix auto interface configuration command in the CLI to enable the automatic medium-dependent interface crossover (auto-MDIX) feature.
66
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 66 Configure SDM and Web Access Modern Cisco switches have a number of web-based configuration tools that require that the switch is configured as an HTTP server
67
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 67 Review
68
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 68 Review
69
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 69 The benefits of Vlans
70
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 70 The management VLAN What is the default value for the management LAN? What does the administrator use the management VLAN for?” The IP address of the switch VLAN configuration and maintenance Cisco Discovery Protocol (CDP) and VLAN Trunking Protocol (VTP) traffic When creating a VLAN give it a number and a name – other than the reserved number of VLAN 1.
71
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 71 Configuring Vlans The next three sections of this chapter include the commands to configure, verify, maintain, and troubleshoot VLANs. In this first section, the commands to create and assign ports to a VLAN are introduced. We will stop after each section to review the syntax of the command and the output. You will put all these pieces together in the Hands-On Lab in the final section.”
72
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 72 Use the following commands to create the VLAN Create the Vlan ID Name the VLAN Assign at least one switch port to the VLAN to make it active …
73
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 73 Verify interface assignments This command shows all VLAN assignments
74
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 74 Verify interface assignments This command limits information for one specific VLAN
75
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 75 Deleting a VLAN When a port is disassociated from a specific VLAN, it returns to VLAN1
76
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 76 Identifying VLANs on a Cisco Switch VLAN ID Frame tagging: IEEE 802.1Q
77
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 77 Describe and Configure Trunking and Inter- VLAN Routing Trunk port characteristics Point-to-point link Carry multiple-VLAN traffic over single link Support for frame tagging Trunk modes 802.1q is now default tagging protocol on Cisco switches
78
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 78 Access Ports versus Trunk Ports
79
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 79 Configuring Trunks
80
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 80 Untagged traffic Some traffic however, needs to cross the 802.1Q configured link without VLAN ID. Traffic with no VLAN ID is called untagged. Examples of untagged traffic are Cisco Discovery Protocol (CDP), VTP, and certain types of voice traffic. Untagged traffic minimizes the delays associated with inspection of the VLAN ID tag.
81
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 81 Remember, tagging is used by switches… the tag gets removed. Extending VLANs across switches Configuring a native VLAN Trunks and the native VLAN
82
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 82 Connectivity between different VLANs Subinterfaces Router-on-a-stick Inter-VLAN Routing
83
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 83 To configure inter-VLAN routing To configure inter-VLAN routing, use the following steps: 1. Configure a trunk port on the switch. Switch(config)#interface fa0/2 Switch(config-if)#switchport mode trunk 2. On the router, configure a FastEthernet interface with no IP address or subnet mask. Router(config)#interface fa0/1 Router(config-if)#no ip address Router(config-if)#no shutdown
84
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 84 To configure inter-VLAN routing 3. On the router, configure one subinterface with an IP address and subnet mask for each VLAN. Each subinterface has an 802.1Q encapsulation. Router(config)#interface fa0/0.10 Router(config-subif)#encapsulation dot1q 10 Router(config-subif)#ip address 192.168.10.1 255.255.255.0
85
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 85 VLAN Trunking Protocol (VTP) purpose and goals Management domain VTP modes: server, client, transparent VLAN database Configuration revision number Maintain VLAN Structure on an Enterprise Network
86
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 86 VTP modes - Server
87
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 87 VTP modes - Transparent
88
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 88 VTP modes - Transparent
89
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 89 VTP database A problem situation can occur related to the revision number if someone inserts a switch with a higher revision number into the network. Since a switch is a server by default, this results in new, but incorrect, information overwriting the legitimate VLAN information on all of the other switches
90
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 90 Maintain VLAN Structure on an Enterprise Network VTP messages Summary advertisements Subset advertisements Advertisement requests
91
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 91 Configuring VTP Verifying VTP configuration Maintain VLAN Structure on an Enterprise Network
92
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 92 Show VTP Status When adding a new switch to an existing VTP domain, use the following steps: Step 1: Configure VTP off-line (version 1) Step 2: Verify the VTP configuration. Step 3: Reboot the switch
93
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 93 VLANs and IP phones VLANs and wireless security Maintain VLAN Structure on an Enterprise Network
94
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 94 VLAN best practices VLAN security Maintain VLAN Structure on an Enterprise Network
95
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 95 Summary Switches forward traffic using store and forward or cut-through techniques Basic security features should be applied to switches A VLAN is a way to group hosts on the same logical network even though they may be physically separated Frame tagging allows a switch to identify the source VLAN of an Ethernet frame. A Layer 3 device is needed to move traffic between different VLANs. Subinterfaces allow router interfaces to support multiple VLANs. VLAN Trunking Protocol provides centralized control, distribution and maintenance of VLANs.
96
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 96
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.