Presentation is loading. Please wait.

Presentation is loading. Please wait.

Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”

Similar presentations


Presentation on theme: "Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”"— Presentation transcript:

1 Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”

2 D.Peressounko, WPCF, Kromeriz, 2005 2 Outlook Photons are special:  Penetrating=> Specific R(K T ) dependence  Massless => Unusual R inv and inv interpretation  Rare => Strong background Experimental review  Completed experiments TAPS,WA98  Ongoing PHENIX,STAR  Developing ALICE Conclusions

3 D.Peressounko, WPCF, Kromeriz, 2005 3 Accessing space-time dimensions of different stages of the collision Pb+Pb @ 17.2 AGeV R out R side R long 3+1 hydro with first order phase transition. QGP phase includes pre-equilibrium pQCD contribution D.P. Phys.Rev.Lett.93:022301,2004 QGP mixed hadr

4 D.Peressounko, WPCF, Kromeriz, 2005 4 K T dependence of photon correlation radii RHIC Au+Au @ 200 AGeV D.P. Phys.Rev.Lett.93:022301,2004 D.Srivastava, Phys.Rev.C71:034905,2005 T.Renk, hep-ph/0408218

5 D.Peressounko, WPCF, Kromeriz, 2005 5 Predictions for correlation radii SystemR out (fm)R side (fm)R long (fm)R inv (fm)  4.44.20.2 D.Srivastava, Phys.Rev.C71:034905,2005  4.33.91.23.0 D.Peressounko, Phys.Rev.Lett.93:022301,2004 ee K T =1 GeV 6.03.2 3.3 * 3.2 J.Alam et al., Phys.Rev.C70:054901,2004  5.53.0 1.6 * 3.0 J.Alam et al., Phys.Rev.C67:054902,2003  5.14.32.8- T.Renk, hep-ph/0408218 * Not LCMS system RHIC, Au+Au@200 AGeV, K T =2GeV

6 D.Peressounko, WPCF, Kromeriz, 2005 6 Q inv parameterization for massless particles S(x) = exp( - t 2 /  2 – x 2 /R o 2 - y 2 /R s 2 - z 2 /R l 2 ), C 2 (q o,q s,q l )=1 + exp( -q o 2 (R o 2 +  2  2 ) -q s 2 R s 2 -q l 2 R l 2 ) C 2 (Q inv )= ∫d 3 q/q e C 2 (q o,q s,q l )  (Q inv 2 +q 2 ) ∫d 3 q/q e  (Q inv 2 +q 2 ) = 1/(4  ) ∫ [1+ exp{-Q inv 2 (K 0 2 /M 2 cos 2  (R o 2 +  2  2 ) + R s 2 sin 2  sin 2  + R l 2 sin 2  cos 2  ) }] d  = 1+ inv exp{-Q inv 2 R inv 2 ) R inv = (not R o !) inv = 1/(4  ) ∫ exp{ - 4K T 2 (R o 2 +  2 )cos 2  }d  For massless particles ( ,e) Q inv parameterization is very special! (integrate in CM frame of the pair)

7 D.Peressounko, WPCF, Kromeriz, 2005 7 Q inv parameterization for massless particles (MC) Set 1:R o = 6R s = 6R l = 6 Set 2:R o = 4R s = 6R l = 6 Set 3:R o = 2R s = 6R l = 6 Set 4:R o = 6R s = 4R l = 6 Set 5:R o = 6R s = 2R l = 6 Set 6:R o = 6R s = 4R l = 4 Set 7:R o = 4R s = 4R l = 4 Set 8:R o = 2R s = 4R l = 4 Set 9:R o = 6R s = 2R l = 2 inv = Erf(2K T √R o 2 +  2 )/(2K T √R o 2 +  2 ) inv =1/(2K T √R o 2 +  2 )

8 D.Peressounko, WPCF, Kromeriz, 2005 8 Background photon correlations Bose-Einstein  0 correlations Resonance decays Collective flow 00 00     } 00 00 00 } 

9 D.Peressounko, WPCF, Kromeriz, 2005 9  0 BE residual correlations D.P. Phys.Rev.Lett.93:022301,2004 R  =4 fm R  =5 fm R  =6 fm C 2  =1+exp(-Q inv 2 R  2 )

10 D.Peressounko, WPCF, Kromeriz, 2005 10  0 BE residual correlations A.Deloff and T.Siemiarczuk, ALICE internal note INT-98-50  =1/2(k 1 -k 2 ) C 2  (  )=1+ /(1+  2 R  2 ) 2 dN  /dp=p·epx(-p/[3GeV])

11 D.Peressounko, WPCF, Kromeriz, 2005 11  0 BE residual correlations O.V.Utyuzh, G.Wilk, Nukleonika 49:S15 (2004), hep-ph/0312364 Varying width (and strength) Varying strength

12 D.Peressounko, WPCF, Kromeriz, 2005 12 TAPS: detector setup BaF 2 25 cm long (12 X 0 ) prism of hexagonal cross section, the diameter of the inner circle being 5.9 cm (69% of the Moliere radius). Min angle cut between photons 8.3 0 Distance to IP 62 cm Typical photon energy ~10 MeV

13 D.Peressounko, WPCF, Kromeriz, 2005 13 TAPS: m  distribution and C 2 Geant simulations 86 Kr+ nat Ni @ 60 AMeV 181 Ta+ 197 Au @ 40 AMeV Comparison to BUU calculations

14 D.Peressounko, WPCF, Kromeriz, 2005 14 Number of events collected: Peripheral (20% min bias) 3897935 Central (10% min bias) 5817217 WA98 setup

15 D.Peressounko, WPCF, Kromeriz, 2005 15 Two photon correlation functions

16 D.Peressounko, WPCF, Kromeriz, 2005 16 WA98: apparatus effects L min = 20 cm (5 modules) L min = 25 cm (6 modules) L min = 30 cm (7 modules) L min = 35 cm (9 modules) 200 < K T < 300 MeV 100 < K T < 200 MeV 200 < K T < 300 MeV

17 D.Peressounko, WPCF, Kromeriz, 2005 17 Hadrons and photon conversion “Narrow” (16 + 1)% (4 + 1)% “Neutral” ( 1 + 4)% (1 + 4)% “All” (37 + 4)% (22 + 4)% “Narrow neutral” (1 + 1)% (1 + 1)% obs = = 1 (N  dir ) 2 2 (N  tot + cont) 2 Contamination, (charged + neutral) 100<K T <200 200<K T <300 pid true (1+ cont/ N  tot ) 2

18 D.Peressounko, WPCF, Kromeriz, 2005 18 Photon background correlations  0  0 Bose-Einstein correlations: Slope: -(4.5±0.4)·10 -3 (GeV -1 ) Elliptic flow: Slope: -(3.1±0.4)·10 -3 (GeV -1 ) Decays of resonances: K 0 s →2  0 →4  K 0 L →3  0 →6   →3  0 →6   →  0  →3 

19 D.Peressounko, WPCF, Kromeriz, 2005 19 C 2 (Q inv ) =1 + /(4  ) ∫ do exp{ - Q inv 2 (R s 2 sin 2  sin 2  + R l 2 sin 2  cos 2  ) - (Q inv 2 + 4K T 2 )cos 2  R o 2 } R  R  long R  side R inv = f(R s,R l ) inv = Erf(2K T R o ) 2K T R o (for massless particles!) Invariant correlation radius

20 D.Peressounko, WPCF, Kromeriz, 2005 20 Subtraction method, upper limit Yield of direct photons Correlation method: Subtraction method Predictions hadronic gas QGP sum pQCD Predictions: S. Turbide, R. Rapp, and C. Gale, hep-ph/0308085. N  dir = N  total √2 inv = Erf(2K T R o ) 2K T R o Most probable yield (R o =6 fm) The lowest yield (R o =0)

21 D.Peressounko, WPCF, Kromeriz, 2005 21 PHENIX setup Lead Scintillator Lead + scintillating plates of 5.5*5.5 cm 2 at a distance 510 cm from IP. Lead Glass PbGl crystals 4*4 cm 2 cross section distance 550 cm from IP

22 D.Peressounko, WPCF, Kromeriz, 2005 22 PHENIX: Comparison to data d+Au collisions at √s NN =200 GeV

23 D.Peressounko, WPCF, Kromeriz, 2005 23 STAR Use 1 gamma in TPC, 1 gamma in calorimeter. A procedure has been developed which permits the measurement of gamma-gamma HBT signals despite the large background of gammas from π 0 mesons Gamma energy > 1.0 GeV is required for the residual π 0 correlation to be “small” “No HBT” calculation may be needed but appears to be doable. Conclusions from the talk of J. Sandweiss on “RHIC-AGS users meeting”, June 21, 2005, BNL:

24 D.Peressounko, WPCF, Kromeriz, 2005 24 ALICE setup PHOS: crystals PbW0 4 2*2 cm cross section Distance to IP 460 cm

25 D.Peressounko, WPCF, Kromeriz, 2005 25 ALICE: unfolding and resolution

26 D.Peressounko, WPCF, Kromeriz, 2005 26 ALICE: photon correlations in HIJING event K t =200 MeV

27 D.Peressounko, WPCF, Kromeriz, 2005 27 Summary Direct photon and electron interferometry is rather special subject due to penetrating nature, zero mass and low yield. Two-photon correlations were observed in two experiments up to now. Photon correlations are analyzed now at PHENIX and STAR. PHOS detector at ALICE is very promising tool due to fine granularity and high spatial and energy resolutions.

28 D.Peressounko, WPCF, Kromeriz, 2005 28 PHENIX: MC simulations K t = 0.2 GeV Using measured spectra and yields for  0, kaons and  K+→K+→ K0S→K0S→ K0L→30K0L→30 →30→30 c  =4.7 m c  =15. m c  =0.02 m

29 D.Peressounko, WPCF, Kromeriz, 2005 29 Jan-e Alam et al., ee correlations J.Alam et al., Phys.Rev.C70:054901,2004 K T =1 GeV Not LCMS

30 D.Peressounko, WPCF, Kromeriz, 2005 30 T.Renk Side Long side out T.Renk, hep-ph/0408218

31 D.Peressounko, WPCF, Kromeriz, 2005 31 Penetrating probes: probe all stages? RHIC Au+Au @ 200 AGeV D.P. Phys.Rev.Lett.93:022301,2004

32 D.Peressounko, WPCF, Kromeriz, 2005 32 Possible sources of distortion of correlation function Apparatus effects (cluster splitting and merging) Hadron misidentification Photon conversion Photon background correlations:  Bose-Einstein correlations of parent  0 ;  Collective (elliptic) flow;  Residual correlations due to decays of resonances;


Download ppt "Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”"

Similar presentations


Ads by Google